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Abstract—In this paper we present a novel method to improve the
flexibility of descriptor matching for image recognition by using local mul-
tiresolution pyramids in feature space. We propose that image patches
be represented at multiple levels of descriptor detail and that these
levels be defined in terms of local spatial pooling resolution. Preserving
multiple levels of detail in local descriptors is a way of hedging one’s
bets on which levels will most relevant for matching during learning and
recognition. We introduce the Pyramid SIFT (P-SIFT) descriptor and
show that its use in four state-of-the-art image recognition pipelines
improves accuracy and yields state-of-the-art results. Our technique
is applicable independently of spatial pyramid matching and we show
that spatial pyramids can be combined with local pyramids to obtain
further improvement. We achieve state-of-the-art results on Caltech-101
(80.1%) and Caltech-256 (52.6%) when compared to other approaches
based on SIFT features over intensity images. Our technique is efficient
and is extremely easy to integrate into image recognition pipelines.

Index Terms—Object categorization, local features, kernel methods.

1 INTRODUCTION

Object class recognition in images has been steadily gaining im-
portance in the computer vision research community. Among
the many image representation strategies, models based on
local features that capture the most distinctive and dominant
structures in the image have been widely used and demon-
strate excellent performance. Feature-based representations of
images typically consist of a set of local features extracted from
patches around salient interest points or over regular grids [1],
[2]. The Bag-of-Words (BOW) pipeline and its variants appeal
to the analogy of text representation and retrieval [1] through
use of frequency statistics of visual word occurrence as an
image descriptor. Visual words are usually determined using
k-means clustering on a sample of local features. Once local
image features are mapped to dictionary words, a pooling
stage accumulates local visual word frequency statistics into
a global, histogram-based representation of the image suit-
able for recognition with classifiers such as support vector
machines. A plethora of techniques have been proposed to
improve the spatial pooling, feature quantization, and kernel
classification stages of the BOW pipeline.

In this paper we propose a strategy for building local
feature descriptors that capture local information at multiple
levels of resolution. Our key idea, illustrated in figure 1 for
SIFT features, is to define a local feature that, instead of
being composed of a single resolution descriptor, is a multi-
resolution set of descriptors. This allows us to capture the
appearance of a local patch at multiple levels of detail and
to maintain distinctiveness, all while preserving invariance
at each level of resolution. Our approach can be applied to
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Fig. 1: The pyramidal SIFT descriptor is a set of three SIFT
descriptors that describe the patch at different levels of detail.

any descriptor that can be naturally structured as a multi-
resolution set. Local image descriptors are typically computed
through a common pipeline starting from raw image patches
and applying a sequence of transformations that ends in a
local spatial pooling of image measurements [3]. The spatial
pooling stage is parameterized by the number, location and
size of pooling regions. We can pyramidize any descriptor with
such a stage simply by varying the size and density of pooling
regions. Apart from SIFT [4], descriptors that incorporate a
spatial pooling stage are HOGs [5], GLOH [6], DAISY-like de-
scriptors [3] and SIFT-like color descriptors [7], among others.
Our approach is complementary to both spatial pyramids and
multi-scale local descriptor sampling. We demonstrate how
our local pyramidal descriptors improve image classification
results for the standard BOW approach, as well as for three
successful and more recent encoding techniques: the Efficient
Match Kernel [8], Locality-constrained Linear Coding [9] and
Fisher vector models of image classification [10].

In the next section we review work from the literature
related to our approach and in section 3 we define a mul-
tiresolution pyramidal SIFT descriptor (the P-SIFT descriptor)
which we use in our general image categorization framework
based on the Sum Match Kernel. This framework is used
in section 4 where we show how to incorporate pyramidal
features into four state-of-the-art image recognition pipelines
that can be thought of as approximations of the Sum Match
Kernel approach. We show that each of these models lends
itself well to incorporation of multiresolution descriptors and
in section 5 that use of P-SIFT descriptors results in state-of-the-
art performance on the Caltech-101 and Caltech-256 datasets.

2 RELATED WORK

A natural way to compute similarity between two images
represented as sets of local features is the The Sum Match Ker-
nel [11]. The intuition behind it is to incorporate information
about all pairs of feature descriptors between the two sets. The
Sum Match Kernel is interesting from a theoretical perspective,
but in practice is computationally onerous as its calculation
is quadratic in the number of features per image. Especially
given the current trend towards large scale problems in image
retrieval, it is important to adopt image representations and to
use kernels that scale well in the number of images. Many state-
of-the-art image recognition approaches, including the BOW
model itself, are based on direct, efficient approximations of the
Sum Match Kernel. Parsana et al. [12] proposed the neighbor-
hood kernel that integrates feature co-occurrence and spatial
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information of local features. Although these approaches yield
state-of-the-art results, they have space and time complexity
that is quadratic in the number of images and neighborhood
size. To make the computation of such kernels more efficient,
Bo et al. [8] recently proposed the Efficient Match Kernel
(EMK) that maps local features to a low dimensional feature
space and then constructs set-level features by averaging the
resulting feature vectors.

Improvements to feature coding have focused primarily on
better representations and/or reconstructions of local features,
often using more than a single vocabulary descriptor. Zhang et
al. [13] proposed an image classification framework that
leverages non-negative sparse coding and sparse matrix de-
composition. Similarly, Wang et al. [9] presented the Locality
Constrained Linear Coding (LLC) technique that substitutes
vector quantization. LLC utilizes a locality constraint to project
each descriptor onto a local coordinate system and has been
shown to improve over the BOW model when used in con-
junction with max-pooling. Approaches like LLC are of partic-
ular interest because the representation yields state-of-the-art
recognition results using linear SVMs, which is important for
efficiency and scalability. Liu et al. [14] performed an in depth
analysis of soft-assignment of local features to visual words.
They show that soft-assignment, considering only the k-nearest
words for coding, can be comparable to more complex LLC and
sparse-coding techniques. Perronin et al. [10] proposed Fisher
vectors as a global image representation based on the pooled
gradients of local feature log-likelihoods with respect to the
parameters of a generative model.

In the classic BOW histogram of visual word occurrences
the relationships between local features are completely lost.
It cannot account for the proximity of one word to another,
the spatial configuration in which they appear, or their global
coordinates in the image. To embed spatial information into the
BOW representation, Lazebnik et al. [15] introduced the Spatial
Pyramid Matching (SPM) kernel. It works by partitioning
the image into increasingly finer sub-regions, computing the
BOW histograms of local features in each sub-region, and
concatenating the histograms to form the final representation
of the image. Yang et al. [16] proposed an extension of the SPM
approach which, instead of traditional k-means quantization,
computes a spatial pyramid image representation based on
sparse codes of SIFT features.

Rather than quantize sets of image features down to a
histogram representation, some researchers have investigated
alternative ways to compare differently-sized sets of local fea-
tures. Grauman and Darrel [17] proposed the Pyramid Match-
ing Kernel (PMK) that finds an approximate correspondence
between two sets of feature points. Informally, their method
takes a weighted sum of the number of matches that occur
at each level of resolution, which are defined by placing a
sequence of increasingly coarser grids over the feature space.
At any resolution, two feature points match if they fall into
the same cell of the grid. Matches at finer resolutions are
weighted more than those at coarser ones. Boiman et al. [18]
proposed a trivial nearest neighbor-based approach, the Naive-
Bayes Nearest-Neighbor classifier (NBNN), which employs
nearest neighbor distances in feature space. NBNN computes
direct image-to-class distances without descriptor quantiza-
tion. Removing the quantization step yielded a significant
improvement in classification accuracy. This approach was later
extended by Tuytelaars et al. [19] who introduced a kernelized
version of NBNN. Duchenne et al. [20] proposed a graph-

based image representation whose nodes and edges represent
the regions associated with a coarse image grid and their
adjacency relationships, respectively. The problem of matching
two images is formulated as an energy minimization problem
in a multi-label Markov Random Field.

3 PYRAMIDAL SIFT DESCRIPTORS FOR RECOGNITION

In this section we describe how we represent an image using
local descriptor pyramids. We also describe a general frame-
work for Bag Of Features (BOF) image representation and
classification in terms of the Sum Match Kernel framework.

3.1 The P-SIFT descriptor
We consider SIFT descriptors [4] in an image I sampled on
a regular grid. For a patch of size S per side we define the
relative centers of the N2 pooling region centers (e.g. in Fig.
1 the medium SIFT corresponds to N = 4) as the Cartesian
product R = C × C, where

C =

{(
i− 1

2

)(
S

N

)
− S

2
| i = 1, . . . , N

}
. (1)

For a feature site s on the regular grid, the local pooling centers
Rs = {s + c | c ∈ R} are thus defined by the feature location
s and the offsets defined by Eq. (1).

We define Iθ = arctan
(
Iy,σ
Ix,σ

)
where Ix,σ and Iy,σ are

Gaussian derivatives of image I at scale σ in the x and y
directions, respectively. Iθ is quantized to 8 angles and for
each pooling region (identified by its center r ∈ Rs), an
orientation histogram is computed. When binning each angle,
the contribution of pixel p in the patch centered at site s is
weighted by its gradient magnitude at scale σ and a truncated
triangular window:

w(p, r, s) = ||∇σI(p)|| ·max

(
0, 1− ||p− r− s||

S/2

)
. (2)

The pyramidal SIFT (P-SIFT)1 descriptor is constructed by
varying the pooling resolution N that controls the number
and size of each subregion used to compute each histogram. A
P-SIFT consists of multiple SIFT descriptors that describe the
patch at different levels of detail. We set the derivative scale σ
according to the patch scale and number of pooling regions N2

similarly to [21]. Figure 1 illustrates the construction of a P-SIFT
descriptor consisting of three levels of resolution. The image
feature (a circular edge) is captured at three levels of detail: for
N = 2 (referred as coarse SIFT) practically indistinguishable
from a corner, at N = 4 (medium SIFT) the circular structure
begins to appear, and at N = 6 (fine SIFT) the circular structure
is evident.

From now on we assume that an image I is represented as
a set of local features X :

X = {x1,x2, . . . ,xn} , (3)

where each local feature descriptor is a multiresolution P-SIFT
descriptor consisting of L SIFT descriptors extracted at pooling
resolutions Nl ∈ {N1, . . . , NL} for l = 1, . . . , L:

xi =
(
x1
i ,x

2
i , . . . ,x

L
i

)
, for i ∈ {1, . . . , n} . (4)

Each primitive descriptor xli is a SIFT descriptor computed at
the l-th pooling resolution Nl.

1. Source at: http://www.micc.unifi.it/seidenari/projects/p-sift/

http://www.micc.unifi.it/seidenari/projects/p-sift/
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(e)(d)(c)(b)(a)

Fig. 2: Example of multi-resolution matching of patches (yellow rectangles) from face images of two subjects. (a) query patches
and test image. (b-d) coarse, medium and fine P-SIFT responses on test image. (e) pyramidal kernel over P-SIFT responses.

3.2 The Sum Match Kernel over pyramidal descriptors
Here we show how the P-SIFT descriptor described in the
previous section can be integrated into the Sum Match Kernel
framework. Let X and Y be two images represented as Bags
of Features. The normalized Sum Match Kernel is defined as:

KS(X,Y ) =
1

|X|
1

|Y |
∑
x∈X

∑
y∈Y

k(x,y), (5)

where | · | is the cardinality of a set and k(x,y) is a kernel
expressing the similarity between two local descriptors.

When x and y are P-SIFT descriptors, where each descriptor
is an ordered tuple of L SIFT descriptors as described in Section
3, our local kernel over P-SIFT descriptors is defined as a
weighted sum of the similarities of the descriptors at each level
of the local pyramid:

k(x,y) =

L∑
l=1

wlkl(x,y), (6)

where wl is the weight corresponding to local pyramid level
l and kl(x,y) is a resolution-local kernel expressing the sim-
ilarity between the primitive descriptors x and y at the l-th
level of resolution. The similarity at each level in the local
pyramid is weighted according to the description resolution
at the corresponding level. If the L descriptors are arranged
in ascending order of resolution, we define the weight at level
l as wl = 2l−L. This weighting scheme, inspired by [17], [15],
proved effective in preliminary experiments and is devised so
that similarities at finer resolutions where features are most
distinct are weighted more than those at coarser ones. Uniform
and reversed weighting resulted in lower accuracy.

The final form of the normalized Sum Match Kernel over
pyramidal features then becomes:

KS(X,Y ) =
1

|X|
1

|Y |
∑
x∈X

∑
y∈Y

L∑
l=1

wlkl(x,y). (7)

To give some intuition about the behavior of our pyra-
midal kernel, in Figure 2 we show an example of multi-
resolution matching using the local kernel described in equa-
tion (6) over local descriptors from two face images taken
from Caltech-101. In this example we use the local kernel
kl(x,y) = exp(−γ||xl − yl||2) to measure similarity at each
level of the local pyramid. The first column shows two patches
selected from a face image that are used as queries and,
enclosed, a test image. The remaining columns show the simi-
larity between the query patches and the dense, local patches

from a test image at various levels of descriptor resolution.
Observe that the two selected patches have different degrees
of distinctiveness. In fact, while the eye patch has a strong
distinctive character, the other patch can be approximated
simply as an oblique edge. This difference in distinctiveness is
also confirmed by the matching results using coarse, medium
and fine descriptors. Indeed, for the eye patch we obtain a
precisely localized response for patches around the same eye
with the finest descriptor. The other query patch only matches
with the same part of the face at the medium level.

It is also interesting to note that for the eye query patch in
Figure 2, the medium level descriptor matches the left eye of
the query image with both eyes in the test face image, which
is a desirable property for image classification. The coarser
descriptor instead matches patches with more translation (see
again the eyes). This invariance comes at the cost of additional
correspondences even with objects in the background that are
completely unrelated to the query patch. The local pyramidal
kernel is able to integrate information across multiple levels of
resolution. The left eye is matched with both eyes in the test
image, though it matches the left eye more strongly than the
right.

The use of the normalized Sum Match Kernel defined in
Eq. (5) comes at a high computational cost. Kernel evaluation
is quadratic in the number of local features per image and
linear in the number of resolution levels per local feature.

4 IMAGE RECOGNITION WITH P-SIFT DESCRIPTORS

In this section we show how to incorporate pyramidal features
into four image recognition approaches that use different,
efficient approximations of the normalized Sum Match Kernel
to compare images. P-SIFT can be integrated in each of these
frameworks at a cost that only adds complexity that is linear
in the number of resolution levels.

4.1 Pyramid codebooks for BOW models

Pyramidal descriptors can be directly applied in the Bag
of Words framework. Let V = {v1, . . . ,vD} be a set of
visual words. In the BOW approach each local feature is
quantized into a |D| dimensional binary vector µ(x) =
[µ1(x), . . . , µD(x)]>. In this embedding, µi(x) is equal to 1
if the x is associated to the visual word vi and 0 otherwise.
Descriptor x is associated to the nearest visual word vi. For a
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linear classifier, the kernel function is:

KBOW(X,Y ) =
1

|X|
1

|Y |
∑
x∈X

∑
y∈Y

µ(x)>µ(y)

=
1

|X|
1

|Y |
∑
x∈X

∑
y∈Y

δ(x,y) (8)

where δ(x,y) = 1 when x and y are associated to the same
visual word and 0 otherwise.

Using a pyramidal descriptor we can define a dictionary at
each resolution level and we obtain the following kernel:

KBOW(X,Y ) =
1

|X|
1

|Y |
∑
x∈X

∑
y∈Y

L∑
l=1

wlδl(x,y) (9)

where δl(x,y) is equal to 1 when the feature vectors x and
y at resolution l are associated to the same visual word from
the vocabulary of resolution level l, and 0 otherwise. This for-
mulation allows us to inject the idea of pyramidal descriptors
into a standard bag of words framework. The BOW approach
is computationally cheap, compared to the normalized Sum
Match Kernel, although the patch representation is based on a
coarse approximation to the Sum Match Kernel and therefore
linear embeddings retain less information with respect to more
sophisticated reconstruction approaches [13], [9], [8].

4.2 Fisher vectors over P-SIFT descriptors
The Fisher vector technique uses a probability density function
uλ that models the generative process behind the descriptors
appearing in an image X [10]. The Fisher kernel between X
and Y is defined as:

KFV = GX
>

λ F−1
λ GYλ , (10)

where Fλ is the Fisher information matrix of uλ and GXλ is the
gradient of the log-likelihood of the data X with respect to the
parameters λ of the generative model:

GXλ = ∇λ log uλ(X). (11)

Using the Cholesky factorization of F−1
λ = L>λLλ and defining

GXλ = LλG
X
λ we can rewrite (10) as an inner product:

KFV(X,Y ) = GX
>

λ GYλ . (12)

Assuming that descriptors in X are independent, and thus
uλ(X) =

∏
x∈X uλ(x), the Fisher vector of image X is a

normalized sum of gradients at each point x ∈ X with respect
to the model parameters λ:

GXλ =
∑
x∈X

Lλ∇λ log uλ(x), (13)

The Fisher vector approach works well because it embeds
the original descriptors in a high-dimensional space amenable
to linear classification. We can interpret the Fisher kernel in
equation (10) as a Sum Match Kernel over P-SIFT descriptors:

KFV(X,Y ) =
1

|X|
1

|Y |
∑
x∈X

∑
y∈Y

L∑
l=1

kl(x
l,yl), (14)

where the local kernel at pooling resolution level l is defined
as:

kl(x,y) = (Lλl∇λl log uλl(x))>(Lλl∇λl log uλl(y)), (15)

where λl are the parameters of the generative model at resolu-
tion level l. We use a mixture of Gaussians for each uλl and take
gradients with respect to the means and diagonal covariance
of the mixtures at each resolution level l.

d
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d 2

0 1 2
0

1

2

d
1

d 2

0 1 2
0
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2

(a)
(
ed1 + ed2

)q
(b) eqd1 + eqd2

Fig. 3: The difference between power normalization of the
entire sum (a) and power normalization of terms (b).

4.3 Efficient Match Kernels over P-SIFT descriptors
Plugging in a radial-basis kernel as the local kernel used
for comparing descriptors of corresponding resolutions into
Eq. (7), we obtain the following Sum Match Kernel:

K(X,Y ) =
1

|X|
1

|Y |
∑
x∈X

∑
y∈Y

L∑
l=1

2l−Le(−γ||r
l−sl||2). (16)

We can define an efficient kernel between sets based on our
pyramidal descriptors that approximates Eq. (16). Our ap-
proximation is achieved by generalizing the Efficient Match
Kernel [8] to multiresolution local features.

Let φ(·) represent the infinite dimensional feature map cor-
responding to the kernel k(x,y) from Eq. (16). That is:

k(x,y) =

L∑
l=1

wlkl(x,y)

=

L∑
l=1

2l−Le(−γ||r
l−sl||2)

= [φ1(x), . . . , φL(x)]>[φ1(y), . . . , φL(y)] (17)

The feature maps φl(·) are infinite dimensional due to the
use of the exponential kernel. We proceed estimating a finite-
dimensional approximation to these embeddings by recon-
structing them as linear combinations of learned basis vectors.

We approximate the embedding for each resolution level
φl(x) by solving the following minimization problem:

v̄l(x) = arg min
v
||φl(x)− Hlv||2 (18)

where Hl = [φl(z
l
1) . . . φl(z

l
Dl

)] is a basis of vectors in the
infinite dimensional feature space induced by the feature map
φl. The vectors zli constitute a visual vocabulary of Dl SIFT
descriptors for resolution level l.

Solving (18) and replacing φl(·) with Hlv̄l(·) we have

kl(x,y) = φl(x)>φl(y) ≈ kzl(x)K−1

zl
kzl(y), (19)

where Kzl is the Gramian of kl(·, ·) on the Dl visual words at
level l and kzl(x) is a vector of kernel evaluations between a
feature x at level l and the basis elements for the same level
zli for i ∈ {1, . . . Dl}.

Using the Cholesky decomposition of K−1

zl
= G>l Gl and

substituting the approximations of Eq. (19) into Eq. (17) we
obtain the final approximate pyramidal kernel:

k̂(x,y) =[
√
w1G1kz1(x) . . .

√
wLGLkzL(x)]>

[
√
w1G1kz1(y) . . .

√
wLGLkzL(y)]. (20)

The Sum Match Kernel and its approximations perform
well in terms of recognition, but has the drawback that every
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similarity between pairs of features kl(x,y) contributes equally
to the overall feature set similarity of Eq. (7). The result can be
that many weakly similar feature pairs drown out the relatively
few strongly similar ones. To address this, we perform a power
normalization on scale-local similarity comparisons in order to
accentuate highly-similar pairs, while minimizing the influence
of weakly similar ones. For some q > 1, the Sum Match Kernel
becomes:

KEMK(X,Y ) =
1

|X|
1

|Y |
∑
x∈X

∑
y∈Y

L∑
l=1

wlkl(x,y)q. (21)

Using this type of power normalization effectively makes the
feature selective in that if any of the levels of resolutions match
well between the descriptors x and y, the overall kernel will
reflect this. This property is illustrated in Figure 3 where we
show the difference in behavior when the power is taken inside
or outside the sum of scale-local kernels. For any positive
integer q the power normalized kernel is still Mercer since it
can be written as a product of Mercer kernels.

4.4 Locality Constrained Coding of P-SIFT descriptors

Locality-constrained Linear Coding (LLC) is a technique that
encodes local feature descriptors using an overcomplete basis
or dictionary. Each descriptor is represented by reconstructing
it with a sparse combination of words from a visual vocabulary.
Coding of feature descriptors using LLC works particularly
well when integrating global information into kernel compu-
tations through max-pooling of codes over larger regions [9]. It
can also be thought of as an approximation of the Sum Match
Kernel representation, one that uses local information to code
features and that incorporates non-local information through
max-pooling.

In the classical sparse coding approach, sparsity is enforced
through an `1 regularization term. In LLC, both sparsity and
locality are obtained by constraining the reconstruction for each
descriptor to use only its k nearest neighbors. Formally, the
code c(x) = [c1(x), . . . , c|V |(x)] for a descriptor x is computed
as the solution of the following optimization problem:

c(x) = arg min
c
||x− Bx,kc||2 + λ||c||2

s. t. 1>c = 1,
(22)

where Bx,k is the local basis constructed by the k nearest visual
words of descriptor x from dictionary V .

To incorporate max-pooling into the matching between two
LLC-encoded images, we can formulate the local kernel as
follows. Given two descriptors x and y from two images X
and Y , we form the max-pooled local kernel:

kl(x,y) =

|V |∑
i=1

ci(x)ci(y)µi(x)µi(y), (23)

where

µi(x) =

{
1 if ci(x) ≥ ci(x′) ∀x′ ∈ X
0 otherwise.

(24)

Each ci(·) is a single dimension of an LLC code, while the µi(·)
act as selector functions that ensure that the corresponding ci(·)
contributes to the kernel if and only if it is the maximum in
dimension i over all local features in the image.

As with the other approaches above, we can extend the local
kernel kl to take into account the different resolutions of each

descriptor:

k(x,y) =

L∑
l=1

wlkl(x
l,yl). (25)

For each l ∈ {1 . . . L} we define the max-pooled LLC codes
for resolution level l:

Φl(X) =

[
max
x∈X

cl1(xl), . . . ,max
x∈X

cl|Dl|(x
l)

]
, (26)

where Dl is size of the visual vocabulary for resolution l.
Defining the complete linear embedding as the concatenation
of all levels:

Φ(X) = [Φ1(X),Φ2(X), . . . ,ΦL(X)] , (27)

it results from Eq. (25) and Eq. (26) that the similarity between
two images X and Y represented by pyramidal descriptors is:

KLLC(X,Y ) =
∑
x∈X

∑
y∈Y

k(x,y) (28)

=
∑
x∈X

∑
y∈Y

L∑
l=1

wlkl(x
l,yl) (29)

= Φ(X)>Φ(Y ). (30)

From this we see that pyramidal, max-pooled LLC image repre-
sentations can be compared using the local kernel formulation
of Eq. (25), or equivalently as the scalar product between
concatenated, pyramidal embeddings as in Eq. (30).

5 EXPERIMENTAL RESULTS

We evaluated the performance of our pyramidal descriptors
on Caltech-101 and Caltech-256. For both datasets we resize
images so that their longest dimension is 300 pixels [22]. We
compute P-SIFT descriptors at three patch sizes (24, 32 and 40
pixels) over a dense regular grid with a spacing of 6 pixels. The
extracted pyramidal descriptor for a given patch size consists
of a set of SIFT descriptors at three different spatial pooling
resolutions: 2 × 2, 4 × 4 and 6 × 6. Spatial pyramids are used
to partition the whole image using configurations 1× 1, 2× 2
and 4×4. In the following SP0 refers to the first pyramid level
with no spatial partitioning, SP1 to the concatenation of the
first and second, and SP2 for all three. We use linear SVMs for
classification [23] and all classification accuracies reported are
the average over five independent training and test set splits.

To determine the appropriate size for the visual vocabularies
of each resolution level (i.e. to balance the trade-off between
reconstruction accuracy and memory consumption), we eval-
uated codebook quality by analyzing errors computed using
the EMK approximation in Eq. (18). We used a subsample of
150k SIFT descriptors and ran k-means to learn vocabularies
over a range of sizes. In general, as can be seen in Fig. 4,
the reconstruction error is high when a limited set of visual
words is used, but decreases rapidly with increasing vocab-
ulary size. We also observed that reconstruction error at the
coarse level is less than that at finer levels, mainly due to the
higher distinctiveness of fine descriptors. The error typically
saturates and after a point there is no advantage in increasing
vocabulary size. Based on this error analysis, and considering
the dimensionality of the final image descriptor, we selected
1,000, 2,000 and 2,500 visual words for coarse, medium and
fine levels, respectively, for Caltech-101. For Caltech-256 we
found 3,000, 4,000 and 4,500 visual words to be appropriate
sizes. We use these vocabulary sizes for all experiments on the
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Fig. 4: Reconstruction error as a function of the base dimension-
ality for three levels of descriptor resolution on Caltech-101.
Red dots highlight the dimensionality of the bases selected.

P-EMK, P-BOW and P-LLC approaches. For Fisher vectors we
used PCA as recommended in [10] and used 20, 60 and 80
principal components, and 64, 128 and 256 Gaussians for the
respective dictionaries.

Caltech-101 [24] consists of 9,144 images from 101 object
categories plus one background category. The number of ex-
amples per category varies from 31 to 800 images. Object
categories exhibit color and shape variation, but objects are
all centered and have no viewpoint diversity. We train models
on 15 or 30 randomly selected images per category and test
on the remaining images. Caltech-256 [25] consists of 30,607
images from 256 object categories plus background. Each class
contains at least 80 images. Caltech-256 is challenging due to
high variations in object size, location and pose. To evaluate
classification performance we follow the standard setup: 30 or
60 images were randomly selected from all the categories for
training, and the remaining images were used for testing.

5.1 The contribution of multi-resolution descriptors

To visualize how our multi-resolution representation improves
classification accuracy, we generated object-centric relevance
maps. We first train individual classifiers at each of the three
single levels of resolution. Then, for each test image correctly
recognized by all three learned classifiers, we iteratively re-
move each patch descriptor and compute the variation of the
distance from the learned margin:

∆f (x̂) = β>C ·

 1

|X|
∑

x∈X\x̂

φ̄(x)

−β>C ·

(
1

|X|
∑
x∈X

φ̄(x)

)
(31)

where x̂ is the removed patch and βC is the learned hyperplane
for the correct class C.

A negative variation is a cue of relevance of that particular
patch, while a positive variation indicates that removing the
patch improves the confidence for the correct class. Values of
∆f (x̂) are accumulated at the locations of patches x̂. A final
relevance map for a class is obtained by cropping the object
using the ground-truth annotations and averaging over all
cropped and resized relevance maps for an object category. The
final relevance map size is the average size of the annotated
examples. In Figure 5 we show the three classes with the best
(Figure 5a) and worst (Figure 5b) improvement in accuracy
compared to a classifier trained using standard SIFT and EMK.
We can observe that, for classes with the highest improvement
in accuracy, each resolution has a distinct spatial relevance
pattern. For classes with lower improvement the relevance
maps are quite similar, which means that all levels concentrate
on representing the same parts. It should be noted that classes
with lower improvement are easier and exhibit less intra-
class variation. The individual relevance maps in Figure 5a
show that this intra-class variation is captured by the different

TABLE 1: Accuracy at different descriptor and spatial pyramid
resolution levels on Caltech-101.

Coarse Medium Fine SP0 SP1 SP2
X X X 65.45 75.10 78.31
X X - 64.37 74.74 77.20
X - - 59.35 71.55 75.33
- X - 62.97 73.62 76.82
- - X 61.46 73.38 76.36

resolution levels of our descriptor, each focusing on a different
global object layout.

We performed another set of experiments to quantify how
each level of resolution contributes to improving classification
accuracy. First, we tested the classification performance of our
method obtained by adding each resolution level in turn to
the descriptor. Table 1 summarizes classification accuracy on
Caltech-101 for three spatial pyramid levels using 30 training
images per class. We can observe that, although the coarser
level is quite descriptive, the use of more discriminative in-
formation considerably increases performance. In fact, without
the spatial pyramid the improvement is about six percentage
points (from 59.35% to 65.45%).

The best single-resolution performance is obtained using
the medium resolution descriptor, which corresponds to the
standard SIFT descriptor. The coarse and the fine descriptors
lose few percentage points because the coarse descriptors are
not discriminative enough while the fine ones are too discrim-
inative. However, the accuracy achieved from our pyramidal
descriptors is higher. This is due to the fact that the pyramidal
descriptor has several levels of distinctiveness that are used
adaptively by the pyramidal kernel. From Table 1 we see
that both spatial and feature pyramids contribute to improved
classification accuracy. Starting from just the coarse resolution
descriptor and three levels of spatial pyramid, adding the
medium and fine resolutions yields an increase of about three
percentage points in classification accuracy.

5.2 Pyramidal descriptors for image recognition
In this experiment we compare the extension of the BOW
model with pyramidal descriptors (see Section 4.1) and a
standard BOW on Caltech-101. We used linear and nonlinear2

SVM classifiers with 30 training images per category. In Table 2
we report the accuracy for the three spatial pyramid levels SP0,
SP1 and SP2 described above. The codebook size for Linear
and Hellinger BOW is fixed to 4,000, as we observed that the
performance tends to saturate beyond this. For the extended
bag-of-words we use 1,000, 2,000 and 2,500 as the codebook
size for the coarse, medium and fine levels, respectively. In
both the linear and non-linear cases, the P-SIFT descriptor
consistently outperforms the corresponding multi-scale SIFT
baseline at all pyramid levels. These results show that using
pyramidal SIFT descriptors and pyramidal dictionaries can
improve the standard BOW model.

In Table 2 we also show a comparison of the baseline meth-
ods (BOW, EMK, LLC and FV) and their pyramidized versions
with single- and multi-scale sampling. In rows indicated with
“3S” we sample standard SIFT at patch sizes 24, 32 and 64 so
that the pooling region sizes are comparable to those in single-
scale P-SIFT at patch size 32. Similarly, in rows indicated with

2. All experiments with non-linear kernels use the Hellinger kernel
K(x, y) =

∑
i
√
xiyi which improves histogram comparison by dis-

counting small contributions to dimensions with large magnitudes [10].
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(a) Classes benefitting most from pyramidal descriptor
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(b) Classes benefitting least from pyramidal descriptor

Fig. 5: Classes benefitting most (a) and least (b) from pyramidal representation. For each class we show sample images and
below the classifier responses calculated for each resolution level computed from Eq. (31) and averaged over the entire training
set for that class. Classifier responses are ordered from coarse to fine.

TABLE 2: Accuracy of baseline encoding methods and their
pyramidized versions (P-*) on Caltech-101.

Features Kernel SVM SP0 SP1 SP2
BOW (3S) Linear 48.91 56.93 60.51
P-BOW Linear 49.18 57.86 61.34
BOW (7S) Linear 50.21 57.62 61.74
P-BOW (M) Linear 51.82 59.77 64.46
BOW (3S) Hellinger 60.22 70.22 72.53
P-BOW Hellinger 60.35 70.35 73.06
BOW (7S) Hellinger 61.39 70.81 73.26
P-BOW (M) Hellinger 62.55 71.85 74.27
EMK (3S) Linear 58.56 71.68 74.59
P-EMK Linear 65.45 75.10 78.31
EMK (7S) Linear 57.02 71.75 74.55
P-EMK (M) Linear 66.11 75.69 78.36
LLC (3S) Linear 60.26 72.24 75.47
P-LLC Linear 63.31 73.13 75.59
LLC (7S) Linear 63.83 72.02 75.13
P-LLC (M) Linear 66.61 76.29 78.75
FV (3S) Linear 70.44 75.83 76.26
P-FV Linear 70.82 77.16 78.80
FV (7S) Linear 70.48 74.99 76.83
P-FV (M) Linear 71.02 77.83 80.13

“7S” we sample standard SIFT at patch sizes 16, 24, 32, 40, 48,
64 and 80 to obtain pooling regions comparable to multi-scale
sampling of P-SIFT descriptors at patch sizes 24, 32 and 40
(indicated with “M” in Table 2).

Sampling multiple patch sizes is beneficial in all cases, and
LLC benefits so much from it likely due to the max-pooling
stage unique to it among tested methods. Note that single-scale
P-EMK, P-LLC and P-FV already outperform both multi-scale
BOW baselines for nearly all spatial pyramid configurations.
The best results are consistently achieved with multi-scale
descriptor sampling and our local, pyramidized descriptor.
EMK, LLC and FV better preserve local feature representation
and indeed exhibit better results, and the improvement of P-
SIFT is even more dramatic for EMK and LLC when the spatial
pyramid is not used. This suggests that our technique improves
feature matching and that this improvement is less noticeable
when spatial pyramids avoid confusion by imposing geometric
constraints on local feature matching.

5.3 Comparison to the state-of-the-art
We compare our results with several existing approaches that
use comparable image representations (dense sampling of SIFT
descriptors) on both Caltech-101 and Caltech-2563. In Table 3
we report a comparison between our P-SIFT based approaches
and the state-of-the-art. P-EMK, P-LLC and P-FV all perform
comparably, with P-FV outperforming all methods. For com-
pleteness, at the bottom of Table 3 we include results from
more complex approaches that incorporate many cues and
learn optimal feature combinations [26], [27], or that use global
alignment kernels [20]. Though not strictly comparable with
our approach, we do outperform more complex techniques
such as [20] and [28] on Caltech-256. Note also that our
P-SIFT features can be considered complementary to these
approaches and integrating multiple descriptor resolutions into
them should yield improved results.

6 CONCLUSIONS

In this paper we described an approach to image recognition
using multi-resolution, pyramidized local feature descriptors.
Our P-SIFT descriptor uses three levels of local pooling resolu-
tion to construct a discriminative, local feature representation
for image classification. We further showed how our image
representation can be used within the BOW, EMK, LLC and
Fisher vector techniques to improve classification performance.
The P-SIFT feature is simple and easy to implement, and it nat-
urally complements a range of image coding and classification
techniques.

The performance of the P-SIFT descriptor for image clas-
sification is comparable to the state-of-the-art on Caltech-101
and exceeds the state-of-the-art on Caltech-256. Our approach,
using only SIFT descriptors over intensity images, linear classi-
fiers and no global feature alignment, outperforms significantly
more complex methods, especially on Caltech-256.

P-SIFT features can be incorporated into a BOW pipeline
at marginal cost. The increase in complexity is linear in the
number of resolution levels introduced and the size of the
vocabularies of each level. On Caltech-101, for example, our

3. More results at http://zybler.blogspot.com/2009/08/ and
http://zybler.blogspot.com/2009/10/

http://zybler.blogspot.com/2009/08/
http://zybler.blogspot.com/2009/10/
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TABLE 3: Comparison with the-state-of-the-art for Caltech-101 and Caltech-256.

Methods Caltech-101 Caltech-256
15 Training 30 Training 30 Training 60 Training

P-FV (M) P-SIFT + Fisher encoding + SPM + Linear SVM 71.47 80.13 44.86 52.59
P-LLC (M) P-SIFT + LLC encoding + SPM + Linear SVM 68.25 78.75 42.24 48.91
P-EMK (M) P-SIFT + EMK encoding + SPM + Linear SVM 70.10 78.31 42.08 48.85
Bo et al. [8] EMK + SPM + Kernel SVM 60.50 73.86 30.50 37.60
Tuytelaars et al. [19] Kernelized NBNN + Spatial correspondences 69.20 75.20 37.00 -
Fisher Vectors [22], [10] Fisher encoding + SPM + Linear SVM - 77.78 40.80 47.90
Carreira et al. [29] Second Order Pooling + SPM + Linear SVM - 79.20 - -
C. Zhang et al. [13] Non-negative sparse coding + SPM 69.58 75.68 - -
Wang et al. [9] LLC + SPM + Linear SVM 65.43 73.40 41.19 47.68
Grauman et al. [17] Pyramid match kernel 50.00 58.20 - -
Yang et al. [16] Sparse codes + SPM + Linear SVM 67.00 73.20 34.00 40.10
Lazebnik et al. [15] Hard quantization + SPM + Kernel SVM 56.40 64.60 - -
Duchenne et al. [20] Graph-Matching + Kernel SVM 75.30 80.30 38.10 -
Cao et al. [28] Sparse codes + superpixels + attributes + linear SVM - - 38.74 45.43
Todorovic et al. [30] Segmentation tree + Subcategories + Linear SVM 71.60 81.90 49.50 -
Bo et al. [26] RGB + Sparse codes + Deep Learning + Linear SVM - 82.50 50.70 58.00
Gehler et al. [27] Multiple Features + SPM + LP-β - 77.80 45.80 -

final image descriptor dimensionality is only 5,500 after incor-
porating multiple levels of resolution. Thus our representation
is comparable in size with the typical 4,000 visual words
needed to obtain state-of-the-art results using the vanilla BOW
approach. This little added complexity and the good perfor-
mance with linear SVMs are key contributions considering the
recent trend toward large scale image recognition.

The pyramidized local descriptors that we propose are com-
plementary to many existing image representation and coding
techniques. We demonstrated this with the BOW, EMK, LLC
and Fisher vector approaches in this work, but the P-SIFT
descriptor could be used in more complex image representation
and matching frameworks which perform global alignment
of image features before recognition. We expect similar per-
formance gains when combined with more complex image
matching techniques.
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