toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Miguel Angel Bautista; Oriol Pujol; Fernando De la Torre; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Error-Correcting Factorization Type Journal Article
  Year 2018 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume (down) 40 Issue Pages 2388-2401  
  Keywords  
  Abstract Error Correcting Output Codes (ECOC) is a successful technique in multi-class classification, which is a core problem in Pattern Recognition and Machine Learning. A major advantage of ECOC over other methods is that the multi- class problem is decoupled into a set of binary problems that are solved independently. However, literature defines a general error-correcting capability for ECOCs without analyzing how it distributes among classes, hindering a deeper analysis of pair-wise error-correction. To address these limitations this paper proposes an Error-Correcting Factorization (ECF) method, our contribution is three fold: (I) We propose a novel representation of the error-correction capability, called the design matrix, that enables us to build an ECOC on the basis of allocating correction to pairs of classes. (II) We derive the optimal code length of an ECOC using rank properties of the design matrix. (III) ECF is formulated as a discrete optimization problem, and a relaxed solution is found using an efficient constrained block coordinate descent approach. (IV) Enabled by the flexibility introduced with the design matrix we propose to allocate the error-correction on classes that are prone to confusion. Experimental results in several databases show that when allocating the error-correction to confusable classes ECF outperforms state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona;MILAB Approved no  
  Call Number Admin @ si @ BPT2018 Serial 3015  
Permanent link to this record
 

 
Author Hugo Bertiche; Meysam Madadi; Sergio Escalera edit   pdf
url  openurl
  Title PBNS: Physically Based Neural Simulation for Unsupervised Garment Pose Space Deformation Type Journal Article
  Year 2021 Publication ACM Transactions on Graphics Abbreviated Journal  
  Volume (down) 40 Issue 6 Pages 1-14  
  Keywords  
  Abstract We present a methodology to automatically obtain Pose Space Deformation (PSD) basis for rigged garments through deep learning. Classical approaches rely on Physically Based Simulations (PBS) to animate clothes. These are general solutions that, given a sufficiently fine-grained discretization of space and time, can achieve highly realistic results. However, they are computationally expensive and any scene modification prompts the need of re-simulation. Linear Blend Skinning (LBS) with PSD offers a lightweight alternative to PBS, though, it needs huge volumes of data to learn proper PSD. We propose using deep learning, formulated as an implicit PBS, to unsupervisedly learn realistic cloth Pose Space Deformations in a constrained scenario: dressed humans. Furthermore, we show it is possible to train these models in an amount of time comparable to a PBS of a few sequences. To the best of our knowledge, we are the first to propose a neural simulator for cloth.
While deep-based approaches in the domain are becoming a trend, these are data-hungry models. Moreover, authors often propose complex formulations to better learn wrinkles from PBS data. Supervised learning leads to physically inconsistent predictions that require collision solving to be used. Also, dependency on PBS data limits the scalability of these solutions, while their formulation hinders its applicability and compatibility. By proposing an unsupervised methodology to learn PSD for LBS models (3D animation standard), we overcome both of these drawbacks. Results obtained show cloth-consistency in the animated garments and meaningful pose-dependant folds and wrinkles. Our solution is extremely efficient, handles multiple layers of cloth, allows unsupervised outfit resizing and can be easily applied to any custom 3D avatar.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ BME2021c Serial 3643  
Permanent link to this record
 

 
Author Victor M. Campello; Polyxeni Gkontra; Cristian Izquierdo; Carlos Martin-Isla; Alireza Sojoudi; Peter M. Full; Klaus Maier-Hein; Yao Zhang; Zhiqiang He; Jun Ma; Mario Parreno; Alberto Albiol; Fanwei Kong; Shawn C. Shadden; Jorge Corral Acero; Vaanathi Sundaresan; Mina Saber; Mustafa Elattar; Hongwei Li; Bjoern Menze; Firas Khader; Christoph Haarburger; Cian M. Scannell; Mitko Veta; Adam Carscadden; Kumaradevan Punithakumar; Xiao Liu; Sotirios A. Tsaftaris; Xiaoqiong Huang; Xin Yang; Lei Li; Xiahai Zhuang; David Vilades; Martin L. Descalzo; Andrea Guala; Lucia La Mura; Matthias G. Friedrich; Ria Garg; Julie Lebel; Filipe Henriques; Mahir Karakas; Ersin Cavus; Steffen E. Petersen; Sergio Escalera; Santiago Segui; Jose F. Rodriguez Palomares; Karim Lekadir edit  url
doi  openurl
  Title Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge Type Journal Article
  Year 2021 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume (down) 40 Issue 12 Pages 3543-3554  
  Keywords  
  Abstract The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ CGI2021 Serial 3653  
Permanent link to this record
 

 
Author Simone Balocco; Carlo Gatta; Francesco Ciompi; A. Wahle; Petia Radeva; S. Carlier; G. Unal; E. Sanidas; J. Mauri; X. Carillo; T. Kovarnik; C. Wang; H. Chen; T. P. Exarchos; D. I. Fotiadis; F. Destrempes; G. Cloutier; Oriol Pujol; Marina Alberti; E. G. Mendizabal-Ruiz; M. Rivera; T. Aksoy; R. W. Downe; I. A. Kakadiaris edit   pdf
doi  openurl
  Title Standardized evaluation methodology and reference database for evaluating IVUS image segmentation Type Journal Article
  Year 2014 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume (down) 38 Issue 2 Pages 70-90  
  Keywords IVUS (intravascular ultrasound); Evaluation framework; Algorithm comparison; Image segmentation  
  Abstract This paper describes an evaluation framework that allows a standardized and quantitative comparison of IVUS lumen and media segmentation algorithms. This framework has been introduced at the MICCAI 2011 Computing and Visualization for (Intra)Vascular Imaging (CVII) workshop, comparing the results of eight teams that participated.
We describe the available data-base comprising of multi-center, multi-vendor and multi-frequency IVUS datasets, their acquisition, the creation of the reference standard and the evaluation measures. The approaches address segmentation of the lumen, the media, or both borders; semi- or fully-automatic operation; and 2-D vs. 3-D methodology. Three performance measures for quantitative analysis have
been proposed. The results of the evaluation indicate that segmentation of the vessel lumen and media is possible with an accuracy that is comparable to manual annotation when semi-automatic methods are used, as well as encouraging results can be obtained also in case of fully-automatic segmentation. The analysis performed in this paper also highlights the challenges in IVUS segmentation that remains to be
solved.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB; LAMP; HuPBA; 600.046; 600.063; 600.079 Approved no  
  Call Number Admin @ si @ BGC2013 Serial 2314  
Permanent link to this record
 

 
Author Pejman Rasti; Salma Samiei; Mary Agoyi; Sergio Escalera; Gholamreza Anbarjafari edit   pdf
doi  openurl
  Title Robust non-blind color video watermarking using QR decomposition and entropy analysis Type Journal Article
  Year 2016 Publication Journal of Visual Communication and Image Representation Abbreviated Journal JVCIR  
  Volume (down) 38 Issue Pages 838-847  
  Keywords Video watermarking; QR decomposition; Discrete Wavelet Transformation; Chirp Z-transform; Singular value decomposition; Orthogonal–triangular decomposition  
  Abstract Issues such as content identification, document and image security, audience measurement, ownership and copyright among others can be settled by the use of digital watermarking. Many recent video watermarking methods show drops in visual quality of the sequences. The present work addresses the aforementioned issue by introducing a robust and imperceptible non-blind color video frame watermarking algorithm. The method divides frames into moving and non-moving parts. The non-moving part of each color channel is processed separately using a block-based watermarking scheme. Blocks with an entropy lower than the average entropy of all blocks are subject to a further process for embedding the watermark image. Finally a watermarked frame is generated by adding moving parts to it. Several signal processing attacks are applied to each watermarked frame in order to perform experiments and are compared with some recent algorithms. Experimental results show that the proposed scheme is imperceptible and robust against common signal processing attacks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @RSA2016 Serial 2766  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: