toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Victor Ponce; Sergio Escalera; Marc Perez; Oriol Janes; Xavier Baro edit  doi
openurl 
  Title Non-Verbal Communication Analysis in Victim-Offender Mediations Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume (down) 67 Issue 1 Pages 19-27  
  Keywords Victim–Offender Mediation; Multi-modal human behavior analysis; Face and gesture recognition; Social signal processing; Computer vision; Machine learning  
  Abstract We present a non-invasive ambient intelligence framework for the semi-automatic analysis of non-verbal communication applied to the restorative justice field. We propose the use of computer vision and social signal processing technologies in real scenarios of Victim–Offender Mediations, applying feature extraction techniques to multi-modal audio-RGB-depth data. We compute a set of behavioral indicators that define communicative cues from the fields of psychology and observational methodology. We test our methodology on data captured in real Victim–Offender Mediation sessions in Catalonia. We define the ground truth based on expert opinions when annotating the observed social responses. Using different state of the art binary classification approaches, our system achieves recognition accuracies of 86% when predicting satisfaction, and 79% when predicting both agreement and receptivity. Applying a regression strategy, we obtain a mean deviation for the predictions between 0.5 and 0.7 in the range [1–5] for the computed social signals.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MV Approved no  
  Call Number Admin @ si @ PEP2015 Serial 2583  
Permanent link to this record
 

 
Author Miguel Reyes; Albert Clapes; Jose Ramirez; Juan R Revilla; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Automatic Digital Biometry Analysis based on Depth Maps Type Journal Article
  Year 2013 Publication Computers in Industry Abbreviated Journal COMPUTIND  
  Volume (down) 64 Issue 9 Pages 1316-1325  
  Keywords Multi-modal data fusion; Depth maps; Posture analysis; Anthropometric data; Musculo-skeletal disorders; Gesture analysis  
  Abstract World Health Organization estimates that 80% of the world population is affected by back-related disorders during his life. Current practices to analyze musculo-skeletal disorders (MSDs) are expensive, subjective, and invasive. In this work, we propose a tool for static body posture analysis and dynamic range of movement estimation of the skeleton joints based on 3D anthropometric information from multi-modal data. Given a set of keypoints, RGB and depth data are aligned, depth surface is reconstructed, keypoints are matched, and accurate measurements about posture and spinal curvature are computed. Given a set of joints, range of movement measurements is also obtained. Moreover, gesture recognition based on joint movements is performed to look for the correctness in the development of physical exercises. The system shows high precision and reliable measurements, being useful for posture reeducation purposes to prevent MSDs, as well as tracking the posture evolution of patients in rehabilitation treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ RCR2013 Serial 2252  
Permanent link to this record
 

 
Author Marina Alberti; Simone Balocco; Carlo Gatta; Francesco Ciompi; Oriol Pujol; Joana Silva; Xavier Carrillo; Petia Radeva edit  url
doi  openurl
  Title Automatic Bifurcation Detection in Coronary IVUS Sequences Type Journal Article
  Year 2012 Publication IEEE Transactions on Biomedical Engineering Abbreviated Journal TBME  
  Volume (down) 59 Issue 4 Pages 1022-2031  
  Keywords  
  Abstract In this paper, we present a fully automatic method which identifies every bifurcation in an intravascular ultrasound (IVUS) sequence, the corresponding frames, the angular orientation with respect to the IVUS acquisition, and the extension. This goal is reached using a two-level classification scheme: first, a classifier is applied to a set of textural features extracted from each image of a sequence. A comparison among three state-of-the-art discriminative classifiers (AdaBoost, random forest, and support vector machine) is performed to identify the most suitable method for the branching detection task. Second, the results are improved by exploiting contextual information using a multiscale stacked sequential learning scheme. The results are then successively refined using a-priori information about branching dimensions and geometry. The proposed approach provides a robust tool for the quick review of pullback sequences, facilitating the evaluation of the lesion at bifurcation sites. The proposed method reaches an F-Measure score of 86.35%, while the F-Measure scores for inter- and intraobserver variability are 71.63% and 76.18%, respectively. The obtained results are positive. Especially, considering the branching detection task is very challenging, due to high variability in bifurcation dimensions and appearance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0018-9294 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ ABG2012 Serial 1996  
Permanent link to this record
 

 
Author Egils Avots; M. Daneshmanda; Andres Traumann; Sergio Escalera; G. Anbarjafaria edit   pdf
doi  openurl
  Title Automatic garment retexturing based on infrared information Type Journal Article
  Year 2016 Publication Computers & Graphics Abbreviated Journal CG  
  Volume (down) 59 Issue Pages 28-38  
  Keywords Garment Retexturing; Texture Mapping; Infrared Images; RGB-D Acquisition Devices; Shading  
  Abstract This paper introduces a new automatic technique for garment retexturing using a single static image along with the depth and infrared information obtained using the Microsoft Kinect II as the RGB-D acquisition device. First, the garment is segmented out from the image using either the Breadth-First Search algorithm or the semi-automatic procedure provided by the GrabCut method. Then texture domain coordinates are computed for each pixel belonging to the garment using normalised 3D information. Afterwards, shading is applied to the new colours from the texture image. As the main contribution of the proposed method, the latter information is obtained based on extracting a linear map transforming the colour present on the infrared image to that of the RGB colour channels. One of the most important impacts of this strategy is that the resulting retexturing algorithm is colour-, pattern- and lighting-invariant. The experimental results show that it can be used to produce realistic representations, which is substantiated through implementing it under various experimentation scenarios, involving varying lighting intensities and directions. Successful results are accomplished also on video sequences, as well as on images of subjects taking different poses. Based on the Mean Opinion Score analysis conducted on many randomly chosen users, it has been shown to produce more realistic-looking results compared to the existing state-of-the-art methods suggested in the literature. From a wide perspective, the proposed method can be used for retexturing all sorts of segmented surfaces, although the focus of this study is on garment retexturing, and the investigation of the configurations is steered accordingly, since the experiments target an application in the context of virtual fitting rooms.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ ADT2016 Serial 2759  
Permanent link to this record
 

 
Author Jose Seabra; Francesco Ciompi; Oriol Pujol; J. Mauri; Petia Radeva; Joao Sanchez edit  doi
openurl 
  Title Rayleigh Mixture Model for Plaque Characterization in Intravascular Ultrasound Type Journal Article
  Year 2011 Publication IEEE Transactions on Biomedical Engineering Abbreviated Journal TBME  
  Volume (down) 58 Issue 5 Pages 1314-1324  
  Keywords  
  Abstract Vulnerable plaques are the major cause of carotid and coronary vascular problems, such as heart attack or stroke. A correct modeling of plaque echomorphology and composition can help the identification of such lesions. The Rayleigh distribution is widely used to describe (nearly) homogeneous areas in ultrasound images. Since plaques may contain tissues with heterogeneous regions, more complex distributions depending on multiple parameters are usually needed, such as Rice, K or Nakagami distributions. In such cases, the problem formulation becomes more complex, and the optimization procedure to estimate the plaque echomorphology is more difficult. Here, we propose to model the tissue echomorphology by means of a mixture of Rayleigh distributions, known as the Rayleigh mixture model (RMM). The problem formulation is still simple, but its ability to describe complex textural patterns is very powerful. In this paper, we present a method for the automatic estimation of the RMM mixture parameters by means of the expectation maximization algorithm, which aims at characterizing tissue echomorphology in ultrasound (US). The performance of the proposed model is evaluated with a database of in vitro intravascular US cases. We show that the mixture coefficients and Rayleigh parameters explicitly derived from the mixture model are able to accurately describe different plaque types and to significantly improve the characterization performance of an already existing methodology.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ SCP2011 Serial 1712  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: