|
Records |
Links |
|
Author |
Cristina Palmero; Albert Clapes; Chris Bahnsen; Andreas Møgelmose; Thomas B. Moeslund; Sergio Escalera |
|
|
Title |
Multi-modal RGB-Depth-Thermal Human Body Segmentation |
Type |
Journal Article |
|
Year |
2016 |
Publication |
International Journal of Computer Vision |
Abbreviated Journal |
IJCV |
|
|
Volume |
118 |
Issue |
2 |
Pages |
217-239 |
|
|
Keywords |
Human body segmentation; RGB ; Depth Thermal |
|
|
Abstract |
This work addresses the problem of human body segmentation from multi-modal visual cues as a first stage of automatic human behavior analysis. We propose a novel RGB–depth–thermal dataset along with a multi-modal segmentation baseline. The several modalities are registered using a calibration device and a registration algorithm. Our baseline extracts regions of interest using background subtraction, defines a partitioning of the foreground regions into cells, computes a set of image features on those cells using different state-of-the-art feature extractions, and models the distribution of the descriptors per cell using probabilistic models. A supervised learning algorithm then fuses the output likelihoods over cells in a stacked feature vector representation. The baseline, using Gaussian mixture models for the probabilistic modeling and Random Forest for the stacked learning, is superior to other state-of-the-art methods, obtaining an overlap above 75 % on the novel dataset when compared to the manually annotated ground-truth of human segmentations. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer US |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @ PCB2016 |
Serial |
2767 |
|
Permanent link to this record |
|
|
|
|
Author |
Juan Jose Rubio; Takahiro Kashiwa; Teera Laiteerapong; Wenlong Deng; Kohei Nagai; Sergio Escalera; Kotaro Nakayama; Yutaka Matsuo; Helmut Prendinger |
|
|
Title |
Multi-class structural damage segmentation using fully convolutional networks |
Type |
Journal Article |
|
Year |
2019 |
Publication |
Computers in Industry |
Abbreviated Journal |
COMPUTIND |
|
|
Volume |
112 |
Issue |
|
Pages |
103121 |
|
|
Keywords |
Bridge damage detection; Deep learning; Semantic segmentation |
|
|
Abstract |
Structural Health Monitoring (SHM) has benefited from computer vision and more recently, Deep Learning approaches, to accurately estimate the state of deterioration of infrastructure. In our work, we test Fully Convolutional Networks (FCNs) with a dataset of deck areas of bridges for damage segmentation. We create a dataset for delamination and rebar exposure that has been collected from inspection records of bridges in Niigata Prefecture, Japan. The dataset consists of 734 images with three labels per image, which makes it the largest dataset of images of bridge deck damage. This data allows us to estimate the performance of our method based on regions of agreement, which emulates the uncertainty of in-field inspections. We demonstrate the practicality of FCNs to perform automated semantic segmentation of surface damages. Our model achieves a mean accuracy of 89.7% for delamination and 78.4% for rebar exposure, and a weighted F1 score of 81.9%. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj;MILAB;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKL2019 |
Serial |
3315 |
|
Permanent link to this record |
|
|
|
|
Author |
Wenlong Deng; Yongli Mou; Takahiro Kashiwa; Sergio Escalera; Kohei Nagai; Kotaro Nakayama; Yutaka Matsuo; Helmut Prendinger |
|
|
Title |
Vision based Pixel-level Bridge Structural Damage Detection Using a Link ASPP Network |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Automation in Construction |
Abbreviated Journal |
AC |
|
|
Volume |
110 |
Issue |
|
Pages |
102973 |
|
|
Keywords |
Semantic image segmentation; Deep learning |
|
|
Abstract |
Structural Health Monitoring (SHM) has greatly benefited from computer vision. Recently, deep learning approaches are widely used to accurately estimate the state of deterioration of infrastructure. In this work, we focus on the problem of bridge surface structural damage detection, such as delamination and rebar exposure. It is well known that the quality of a deep learning model is highly dependent on the quality of the training dataset. Bridge damage detection, our application domain, has the following main challenges: (i) labeling the damages requires knowledgeable civil engineering professionals, which makes it difficult to collect a large annotated dataset; (ii) the damage area could be very small, whereas the background area is large, which creates an unbalanced training environment; (iii) due to the difficulty to exactly determine the extension of the damage, there is often a variation among different labelers who perform pixel-wise labeling. In this paper, we propose a novel model for bridge structural damage detection to address the first two challenges. This paper follows the idea of an atrous spatial pyramid pooling (ASPP) module that is designed as a novel network for bridge damage detection. Further, we introduce the weight balanced Intersection over Union (IoU) loss function to achieve accurate segmentation on a highly unbalanced small dataset. The experimental results show that (i) the IoU loss function improves the overall performance of damage detection, as compared to cross entropy loss or focal loss, and (ii) the proposed model has a better ability to detect a minority class than other light segmentation networks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ DMK2020 |
Serial |
3314 |
|
Permanent link to this record |
|
|
|
|
Author |
Meysam Madadi; Hugo Bertiche; Sergio Escalera |
|
|
Title |
SMPLR: Deep learning based SMPL reverse for 3D human pose and shape recovery |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
106 |
Issue |
|
Pages |
107472 |
|
|
Keywords |
Deep learning; 3D Human pose; Body shape; SMPL; Denoising autoencoder; Volumetric stack hourglass |
|
|
Abstract |
In this paper we propose to embed SMPL within a deep-based model to accurately estimate 3D pose and shape from a still RGB image. We use CNN-based 3D joint predictions as an intermediate representation to regress SMPL pose and shape parameters. Later, 3D joints are reconstructed again in the SMPL output. This module can be seen as an autoencoder where the encoder is a deep neural network and the decoder is SMPL model. We refer to this as SMPL reverse (SMPLR). By implementing SMPLR as an encoder-decoder we avoid the need of complex constraints on pose and shape. Furthermore, given that in-the-wild datasets usually lack accurate 3D annotations, it is desirable to lift 2D joints to 3D without pairing 3D annotations with RGB images. Therefore, we also propose a denoising autoencoder (DAE) module between CNN and SMPLR, able to lift 2D joints to 3D and partially recover from structured error. We evaluate our method on SURREAL and Human3.6M datasets, showing improvement over SMPL-based state-of-the-art alternatives by about 4 and 12 mm, respectively. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ MBE2020 |
Serial |
3439 |
|
Permanent link to this record |
|
|
|
|
Author |
Maria Salamo; Sergio Escalera |
|
|
Title |
Increasing Retrieval Quality in Conversational Recommenders |
Type |
Journal Article |
|
Year |
2011 |
Publication |
IEEE Transactions on Knowledge and Data Engineering |
Abbreviated Journal |
TKDE |
|
|
Volume |
99 |
Issue |
|
Pages |
1-1 |
|
|
Keywords |
|
|
|
Abstract |
IF JCR CCIA 2.286 2009 24/103
JCR Impact Factor 2010: 1.851
A major task of research in conversational recommender systems is personalization. Critiquing is a common and powerful form of feedback, where a user can express her feature preferences by applying a series of directional critiques over the recommendations instead of providing specific preference values. Incremental Critiquing is a conversational recommender system that uses critiquing as a feedback to efficiently personalize products. The expectation is that in each cycle the system retrieves the products that best satisfy the user’s soft product preferences from a minimal information input. In this paper, we present a novel technique that increases retrieval quality based on a combination of compatibility and similarity scores. Under the hypothesis that a user learns Turing the recommendation process, we propose two novel exponential reinforcement learning approaches for compatibility that take into account both the instant at which the user makes a critique and the number of satisfied critiques. Moreover, we consider that the impact of features on the similarity differs according to the preferences manifested by the user. We propose a global weighting approach that uses a common weight for nearest cases in order to focus on groups of relevant products. We show that our methodology significantly improves recommendation efficiency in four data sets of different sizes in terms of session length in comparison with state-of-the-art approaches. Moreover, our recommender shows higher robustness against noisy user data when compared to classical approaches |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IEEE |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1041-4347 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB; HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ SaE2011 |
Serial |
1713 |
|
Permanent link to this record |