toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (down)
Author Egils Avots; Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Baro; Paul Pallin; Gholamreza Anbarjafari edit   pdf
url  doi
openurl 
  Title From 2D to 3D geodesic-based garment matching Type Journal Article
  Year 2019 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 78 Issue 18 Pages 25829–25853  
  Keywords Shape matching; Geodesic distance; Texture mapping; RGBD image processing; Gaussian mixture model  
  Abstract A new approach for 2D to 3D garment retexturing is proposed based on Gaussian mixture models and thin plate splines (TPS). An automatically segmented garment of an individual is matched to a new source garment and rendered, resulting in augmented images in which the target garment has been retextured using the texture of the source garment. We divide the problem into garment boundary matching based on Gaussian mixture models and then interpolate inner points using surface topology extracted through geodesic paths, which leads to a more realistic result than standard approaches. We evaluated and compared our system quantitatively by root mean square error (RMS) and qualitatively using the mean opinion score (MOS), showing the benefits of the proposed methodology on our gathered dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE; 600.098; 600.119; 602.133;MV;OR;MILAB Approved no  
  Call Number Admin @ si @ AME2019 Serial 3317  
Permanent link to this record
 

 
Author Andre Litvin; Kamal Nasrollahi; Sergio Escalera; Cagri Ozcinar; Thomas B. Moeslund; Gholamreza Anbarjafari edit  url
openurl 
  Title A Novel Deep Network Architecture for Reconstructing RGB Facial Images from Thermal for Face Recognition Type Journal Article
  Year 2019 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 78 Issue 18 Pages 25259–25271  
  Keywords Fully convolutional networks; FusionNet; Thermal imaging; Face recognition  
  Abstract This work proposes a fully convolutional network architecture for RGB face image generation from a given input thermal face image to be applied in face recognition scenarios. The proposed method is based on the FusionNet architecture and increases robustness against overfitting using dropout after bridge connections, randomised leaky ReLUs (RReLUs), and orthogonal regularization. Furthermore, we propose to use a decoding block with resize convolution instead of transposed convolution to improve final RGB face image generation. To validate our proposed network architecture, we train a face classifier and compare its face recognition rate on the reconstructed RGB images from the proposed architecture, to those when reconstructing images with the original FusionNet, as well as when using the original RGB images. As a result, we are introducing a new architecture which leads to a more accurate network.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona;MILAB Approved no  
  Call Number Admin @ si @ LNE2019 Serial 3318  
Permanent link to this record
 

 
Author Albert Clapes; Alex Pardo; Oriol Pujol; Sergio Escalera edit   pdf
url  openurl
  Title Action detection fusing multiple Kinects and a WIMU: an application to in-home assistive technology for the elderly Type Journal Article
  Year 2018 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume 29 Issue 5 Pages 765–788  
  Keywords Multimodal activity detection; Computer vision; Inertial sensors; Dense trajectories; Dynamic time warping; Assistive technology  
  Abstract We present a vision-inertial system which combines two RGB-Depth devices together with a wearable inertial movement unit in order to detect activities of the daily living. From multi-view videos, we extract dense trajectories enriched with a histogram of normals description computed from the depth cue and bag them into multi-view codebooks. During the later classification step a multi-class support vector machine with a RBF- 2 kernel combines the descriptions at kernel level. In order to perform action detection from the videos, a sliding window approach is utilized. On the other hand, we extract accelerations, rotation angles, and jerk features from the inertial data collected by the wearable placed on the user’s dominant wrist. During gesture spotting, a dynamic time warping is applied and the aligning costs to a set of pre-selected gesture sub-classes are thresholded to determine possible detections. The outputs of the two modules are combined in a late-fusion fashion. The system is validated in a real-case scenario with elderly from an elder home. Learning-based fusion results improve the ones from the single modalities, demonstrating the success of such multimodal approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ CPP2018 Serial 3125  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
doi  openurl
  Title Real-time Isolated Hand Sign Language RecognitioN Using Deep Networks and SVD Type Journal
  Year 2022 Publication Journal of Ambient Intelligence and Humanized Computing Abbreviated Journal  
  Volume 13 Issue Pages 591–611  
  Keywords  
  Abstract One of the challenges in computer vision models, especially sign language, is real-time recognition. In this work, we present a simple yet low-complex and efficient model, comprising single shot detector, 2D convolutional neural network, singular value decomposition (SVD), and long short term memory, to real-time isolated hand sign language recognition (IHSLR) from RGB video. We employ the SVD method as an efficient, compact, and discriminative feature extractor from the estimated 3D hand keypoints coordinators. Despite the previous works that employ the estimated 3D hand keypoints coordinates as raw features, we propose a novel and revolutionary way to apply the SVD to the estimated 3D hand keypoints coordinates to get more discriminative features. SVD method is also applied to the geometric relations between the consecutive segments of each finger in each hand and also the angles between these sections. We perform a detailed analysis of recognition time and accuracy. One of our contributions is that this is the first time that the SVD method is applied to the hand pose parameters. Results on four datasets, RKS-PERSIANSIGN (99.5±0.04), First-Person (91±0.06), ASVID (93±0.05), and isoGD (86.1±0.04), confirm the efficiency of our method in both accuracy (mean+std) and time recognition. Furthermore, our model outperforms or gets competitive results with the state-of-the-art alternatives in IHSLR and hand action recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ RKE2022a Serial 3660  
Permanent link to this record
 

 
Author Sergio Escalera; Jordi Gonzalez; Hugo Jair Escalante; Xavier Baro; Isabelle Guyon edit  url
openurl 
  Title Looking at People Special Issue Type Journal Article
  Year 2018 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 126 Issue 2-4 Pages 141-143  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; ISE; 600.119;MV;OR;MILAB Approved no  
  Call Number Admin @ si @ EGJ2018 Serial 3093  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: