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Abstract We present a vision-inertial system which

combines two RGB-Depth devices together with a wear-

able inertial movement unit (WIMU) in order to detect

activities of the daily living. From multi-view videos, we

extract dense trajectories enriched with a Histogram

of Normals description computed from the depth cue

and bag them into multi-view codebooks. During the

later classification step a multi-class Support Vector

Machine (SVM) with a RBF-X 2 kernel combines the

descriptions at kernel level. In order to perform action

detection from the videos, a sliding window approach

is utilized. On the other hand, we extract accelerations,

rotation angles, and jerk features from the inertial data

collected by the wearable placed on the user’s dominant

wrist. During gesture spotting, a Dynamic Time Warp-

ing (DTW) is applied and the aligning costs to a set

of pre-selected gesture sub-classes are thresholded to

determine possible detections. The outputs of the two

modules are combined in a late-fusion fashion. The sys-

tem is validated in a real-case scenario with elderly from

an elder home. Learning-based fusion results improve

the ones from the single modalities, demonstrating the

success of such multi-modal approach.

A. Clapés
E-mail: aclapes@cvc.uab.cat
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1 Introduction

In the developed countries, more and more people are

to live longer; people that will inevitably be potential

sufferers from age-related conditions, e.g. mild cogni-

tive impairments or even the more severe dementia syn-

drome, as stated by [75]. The inversion of the popula-

tion pyramids in these countries will cause the number

of caregivers to be relatively small and thus hardly ac-

cessible for the elderly people. In this context, many in-

stitutions and companies are investing in advanced and

cost-effective technological solutions that could com-

plement the in-home assistance provided by caregivers

and allow affected people to stay longer living indepen-

dently. Such solutions can be provided by intelligent

in-home assistive systems, sometimes also referred to

as Ambient-assisted Living (AAL) technologies.

The AAL research is often conducted from the point

of view of the Ambient Intelligence (AmI) [17,94,106,

67]. The paradigm proposes the use of networks of elec-

tronic devices and sensors that seamlessly inter-operate

to perceive, understand, and adapt to the user needs.

Pressure sensors, RFID tags, pyroelectric (presence) sen-

sors, video cameras or other visual sensors, and wear-

able inertial measurement units (WIMU or simply IMU)

among others, are often found in AmI systems. These

kind of systems are thus multi-modal : data is collected

in the nodes by sensors of different nature. Data that

are somehow combined to improve results over uni-

modal approaches, or even to enable analyses that would
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not be possible given either time or computation con-

straints.

Researchers have exploited the video cue in order

to enable perception capabilities in AmI systems and

hence be able to carry out the demanded complex hu-

man analysis [43,101,81]. Nonetheless, most of the video-

based action recognition algorithms have been demand-

ing in terms of computational resources, especially those

performing the highest level analyses. The apparition of

Microsoft Kinect, a cheap and reliable sensor integrat-

ing both a RGB video camera and a depth infrared sen-

sor, supposed the rapid emergence of new approaches

that largely outperformed the already existing ones in

many tasks. For instance, it allowed background sub-

traction algorithms to be robust to illumination con-

ditions [34] or enabled the body pose estimation from

depth maps in real-time and location of the joints’ po-

sitions [88]. Today, depth imagery combined with the

color information – namely RGB-Depth (or RGBD)

– is a successful multi-modal approach being applied

to a large list of human analysis-related tasks: gesture

recognition [31,100,41], more complex activity recog-

nition [72,58,90,105], re-/identification [59,73,10,68],

gait analysis [23], and subject-object interaction analy-

sis [25], etc.

Inertial sensors have been also widely considered by

the authors to carry out human analysis tasks such

as gesture recognition [62,2,78], gait analysis [103], or

event detection, e.g., fall detection [6], especially prior

to the apparition of Kinect. These devices provide a

higher degree of precision over cameras determining ac-

celerations and orientations. Despite their lack of con-

textual awareness, when used in combination with cam-

eras these provide a powerful modality to exploit for the

task of action/gesture recognition.

In this work, we propose a two-module system com-

bining two Kinect devices together with a WIMU in

order to recognize activities of the daily living in a real-

world scenario with elderly. The Kinect devices face to

each other, so to have a complete occlusion-free view

of the scenario. The streams are processed to compute

multi-modal dense trajectories. Our trajectories are en-

riched with a Histogram of Oriented Normals (HON)

computed from the depth maps, complementing the rel-

ative displacement, the Histogram of Oriented Gradi-

ents (HOG), Histogram of Oriented Flows (HOF), and

Motion Boundary Histogram (MBH) descriptors. Tra-

jectories are then bagged into multi-view codebooks.

Following the approach of [97], a codebook is gener-

ated for each kind of description. Then, in order to

perform the classification, a multi-class Support Vec-

tor Machine (SVM) with X 2-kernel combines the de-

scriptions at kernel level. For action detection, a slid-

ing window approach is followed, so that Bag-of-Words

(BOW) representations for the windows are built from

the extracted trajectories in an efficient ”integral” way.

In parallel, an egocentric module is in charge of per-

forming gesture recognition. In particular, the WIMU

used is a Shimmer sensor placed in the elderly’s dom-

inant wrist. In order to recognize the gesture we first

preprocess the data in order to extract relevant infor-

mation such as accelerometer, rotation angles, and jerk.

Then, we select a set of models from the sequences,

which are used to obtain alignment distances (costs) by

means of a Dynamic Time Warping (DTW) algorithm.

During the process of detecting the gestures, a DTW

performs the alignments respect to the models and de-

termines if new gestures being performed by comparing

alignment-to-model costs to a set of learnt thresholds.

Gestures are defined at a different level of annotation

from activities/actions, so as to be more atomic and

palliate the inherent noisiness to these kind of devices.

The system is validated in a real-case dataset with

elderly people from the SARQuavie Claret elder home.

We guided the elders on different scripted scenarios in-

volving gestures while interacting with objects: “tak-

ing a pill”, “drinking from a glass”, “eating from a

plate”, and “reading a book”. We recorded a total of

31 different sequences of 1-3 minutes of duration each,

with 14 elderly people appearing in it. The obtained

results show the effectiveness of the system. Moreover,

the learning-based fusion results improve the ones from

the single modalities, demonstrating the success of such

multi-modal approach.

Next, we summarize the main contributions of this

work:

– Extension of the dense trajectories framework with

the HON descriptor and its application to action

detection in low frame-rate multi-view videos.

– A novel approach for considering multiple sub-models

per gesture in a dynamic time warping setting.

– The integration of the two former for predicting ac-

tivities in a novel real-case scenario dataset (with

multiple RGBD views and inertial sensors). In con-

trast to many works that use in-lab recorded datasets,

we recorded actual elder people with mobility prob-

lems using the settings one could find in a real home

environment.

The remainder of the paper is organized as follows:

Section 2 reviews the state-of-the-art on assistive tech-

nology for in-home elderly people monitoring with spe-

cial emphasis on works utilizing RGBD technology and

WIMUs. Section 3 describes the dataset, hardware, and

acquisition settings. Section 4 presents the system. Both

vision and wearable modules are explained more in depth
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in their respective sections, Section 4.1 and 4.2 respec-

tively. Section 5 introduces the results got by the dif-

ferent modules of the system and their integration for

final detection output. Finally, Section 6 concludes the

paper and discusses future work.

2 State of the art

In this section, we first cover state-of-the-art systems

applied to AAL scenarios. Then, we focus on methods

and algorithms that perform action and gesture recog-

nition in the two main modules. Finally, we explain the

integration of those modules’ outputs.

2.1 Intelligent systems applied to AAL scenarios

AAL is aimed at preventing risks, providing palliative

care, and ensuring as much as possible the independent

living and well-being of older adults. A recent survey

proposed a categorization of AAL tools and technolo-

gies into: ambient technologies (or smart homes), mo-

bile and wearable sensors, and robotics [69]. In the cate-

gory of ambient technologies, we find CASAS by [79], a

system monitoring activities of the daily living to deter-

mine their completeness, and the work of [1], designed

specifically to support people with dementia at their

places.

2.1.1 Vision systems

There exist many vision systems for activity monitoring

applied to elderly care. [70] uses location cues to deter-

mine activities. Models of spatial context are learned

employing a tracker that uses a coarse ellipse shape and

a particle filter to cope with cluttered scenes seen from

a fisheye camera. Despite being tested in a realistic en-

vironment, the learned models are not transferable to

other scenarios. Moreover, the location of the human in

the scene is not enough to discern among certain ac-

tivities. [30] defines 8 different activities and model the

transitions from one to another by means of a Hidden

Markov Model (HMM). They segment people silhou-

ettes by means of simple but adaptive background sub-

traction and characterize the silhouette poses in frames

with a set of three handcrafted features: height of cen-

ter of mass, vertical speed of the center, and sparsity of

points. In [26], the authors propose to recognize events

in a knowledge-driven approach by using an event mod-

eling framework. In knowledge-based approaches, events

need to be defined by an human expert; for instance, in

here, events are built taking into account a priori knowl-

edge of the experimental scenario. The system is vali-

dated in a real-case scenario with Alzheimer patients.

The appearance of Kinect meant the emergence of

systems and new techniques that could be applied to

in-home AT. In [85], the system monitors human ac-

tivities while seeking for signs of limb or joint pain.

The work defined a set of 7 pain gestures performed by

people on an average age of 40 and above. They report

good results using MLP for classification on the skeletal

features extracted from Kinect. However, the pain ges-

tures are static and in a highly controlled environment.

In [12], the authors present a system to monitor and

control elderly people in a smart house environment.

It recognizes gestures and communicates them through

the network to a caregiver. They match candidate ges-

tures to template simply by computing a distance. In

this case, quantitative results are not presented. [29]

proposes a system capable of recognizing full body ac-

tions, such as walk, jump, grab something from the

floor, stand, sit, and lie (on the floor). The action class

is determined in a heuristic rule-based fashion based on

skeletal joints’ positions. [16] detects pointing gestures

in a smart bedroom to facilitate the elderly people in-

teraction with the environment. In [8], the authors are

detecting very simple activities such as standing, sit-

ting, and the standing-sitting transition. In their work,

silhouettes are subtracted first using a background sub-

traction algorithm. From these silhouettes, image mo-

ments are extracted, which are then clustered using

fuzzy clustering techniques to produce fuzzy labels in

the activity categories. During the functioning of the

system, the classification is done by a fuzzy clustering

prototype classifier. They test several imaging technolo-

gies with night vision capacities, including Kinect. The

system is tested at a senior house facility with older

adults with physical health issues. [104] defines a set

of 13 activities of the daily living and the skeletal fea-

tures are used to generate a codebook of poses. Then,

in a BOW approach, poses from individual frames are

binned in a histogram representing the pre-segmented

activity videos and classified using a SVM classifier.

The system is tested in a controlled environment and

is not performing detection in continuous streams. [77]

utilizes a Gaussian mixture models-based HMM for hu-

man daily activity recognition using 3D skeleton fea-

tures. [38] introduces a system prototype for telereha-

bilitation for post-stroke patients. They monitor the

range of motion of different limbs during the realization

of daily living activities using a Kinect and accelerom-

eters attached to objects. However, they only monitor

the min and max and compare to the ones from the

previous day and quantify the progress. Their proposal
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does not tackle the action recognition task. Nonethe-

less, being able to recognize particular activities will

make the evaluation of ranges of motions much more

meaningful for therapists.

Skeleton features are widely used for action/gesture

recognition in the literature of in-home assistive sys-

tems. The systems report very good results using these

kind of features, but most of them are applied in very

controlled scenarios in which the body is fully visible.

However, the skeleton is not reliable in the presence of

body occlusions or non-frontal camera angles – as it of-

ten occurs when dealing with real world situations. For-

tunately, there exist many approaches to action recog-

nition that do not require the use of such features in the

literature of computer vision. Next, we review some of

the state-of-the-art of action detection and recognition

that could deal with some of the aforementioned prob-

lems.

2.1.2 WIMU systems

As it is shown in [57], there is a lot of effort in using

IMUs to perform activity recognition. The most com-

mon approach is trying to detect ambulation-related

activities (such as walking, jogging or riding bicycle).

Also, the datasets used tend to be recorded in con-

trolled conditions. One of the works analyzed in [57]

is [82], which uses ontological reasoning to detect ac-

tivities by means of accelerometers, physiological sen-

sors and GPS. Most of the activities recognized are

ambulation-related, but combined with some daily ac-

tivities. However, the chosen ones (brushing teeth and

writing on the blackboard) are pretty different. Another

interesting application is the one presented in [18], in

which RFID sensors are used to track objects inside

a house. They expect to detect cognitive impairment

in morning routines. However, the object-tracking ap-

proach is very limited to those problems in which the

interaction is large in time and implies an object dis-

placement. In [52], IMUs placed on the legs of the pa-

tient are used to track the gait and be able to perform

an analysis. It is a proof of concept and the presented

system is not fully developed. Finally, in [27], authors

use 3D reconstructions from IMUs in order to assist

the therapist in the rehabilitation process of a patient.

They estimate the pose and generate a 3D animation of

the exercise being performed. Additionally, a full sys-

tem architecture is proposed.

2.1.3 Multi-modal RGBD-WIMU systems

We now center on works combining these two modali-

ties: the RGBD vision from Kinect – or similar devices

– with the inertial information provided by WIMUs.

[28] combine the Kinect sensor with 5 WIMUs in

order to recognize activities. They fuse the multiple

modalities in an early fusion fashion. They use a sliding

window approach together with a set of binary trained

MLP classifiers to perform the detection in one-vs-all

setup. [63] performs hand gesture recognition fusing

the inertial and depth data within a HMM framework,

demonstrating an overall improvement. Nonetheless, the

method is tested on a relatively simple dataset of ges-

tures with 5 gestures, i.e., “wave”, “hammer”, “punch”,

“draw an X”, “draw a circle”, thus with considerable

inter-class variability and at a relatively small distance

to the Kinect camera. Our dataset was recorded in a

much more uncontrolled scenario, actions are observed

from a farther position, we deal with occlusions, and

have much smaller inter-class variability; in fact, some

classes can be only distinguished mostly by consider-

ing the interacted object, e.g., drinking and taking the

pill. [42] presents some preliminary analyses for fusing

Kinect and inertial sensors’ data in order to monitor

intake gestures. However, they do not present any per-

formance on the task, but only some qualitative results.

In similar in-home AT scenarios but different from

activity recognition, we also find systems fusing RGBD

vision and WIMUs. [54] proposes a system combining

the depth sensor’s acquisition with accelerometer data

to detect falls. Whereas the accelerometer data is used

to detect potential falls, depth sensor is used to authen-

ticate the fall alert. [14] performs joint angle estimation

in a rehabilitation scenario. Authors perform on-line

calibration of inertial sensor errors whenever measure-

ments from Kinect are available. [40] introduces a real-

time body tracking with one depth camera and 6 iner-

tial sensors and improve the state-of-the-art results of

tracking by combining the two. Such a tracking system

would result very convenient for action/gesture recog-

nition. Inconveniently, such amount of inertial sensors

made them very invasive for in-home monitoring appli-

cations.

Next, we go in more detail on methods and algo-

rithms, on how a vision component and a wearable

component are able to perform respectively action or

gesture recognition tasks by either imagery or inertial

sensors.

2.2 Methods and algorithms using video, wearables,

and multi-modal integration

2.2.1 Action recognition in video

Different approaches exist for action detection in video.

Typically, the detection consists in localizing the ac-

tion within the video either in the temporal domain [35]
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or both in space and time [99,37,45]. In fact, the spa-

tial localization of the action makes the problem even

more demanding. In our case, and since we are not

intended to do that, we focus on the temporal local-

ization. These methods often use a variable-size slid-

ing window in which actual action classification is per-

formed. There exist more cumbersome approaches, like

the one of [35], that break down actions into sub-actions

(or actoms) and model explicitly the length of the win-

dow for each class. Unfortunately, it requires expensive

manual annotations of actoms. In this work, we simply

convolve a sliding window of different sizes and perform

action classification in it. Next, we review the state-of-

the-art methods for action classification.

Following the taxonomy proposed by [35], we divide

action recognition methods in videos – it can also be

applied to gesture recognition – into three main cat-

egories: sequential modeling, template-based methods,

and local features. Sequential modeling methods can be

categorized into (a) those that learn temporal transi-

tions among a set of hidden states, i.e. the Hidden

Markov Models-based approaches [91,24], and (b) those

that use the alignment score between an action and

class exemplars [19]. The main limitation they present

is dealing with concurrent actions or gestures. More-

over, Hidden-Markov Models are data-demanding; be-

ing highly parametric they suffer with insufficient train-

ing data [74].

On the other hand, template-based methods consider

the video as a 3D volume – where the temporal (third)

dimension is the depth of the volume. Matches among

volumes can be done directly by means of tensor-based

techniques directly [51], or representing first the ac-

tor using silhouettes [13,83], optical flow information

within the volume [86,49], or space-time energy mea-

surements [15,84]. These methods perform poorly when

videos are not in controlled environments where the full

body is visible.

Finally, in local feature-based methods a set of local

patches are extracted on 3D interest points detected

in the spatio-temporal volume and later described [87].

The detection is crucial [55]. These interest point de-

tectors are typically combined with the most power-

ful state-of-the-art descriptors, e.g. STIP+HOG [56].

Lately, the dense trajectories have replaced the use of

STIP [97,98]. These are constructed from optical flow

fields, by tracking the displacement of a pixel during

a subset of frames. Like in STIP approaches, appear-

ance and motion descriptors are computed in the im-

age patches all along the trajectory. Either the STIPs

or trajectories provide a representation based on local

features, thus a way of computing a global vector-form

representation for a video (or temporal segment) is re-

quired. This is typically tackled using a Bag-of-Features

approach [97] or the more recent Fisher Vector (FV)

representation [98] in combination with a discrimina-

tive state-of-the-art classifier.

Taking into account the success of Convolutional

Neural Networks in image classification, it is worth con-

sidering them also for action classification [48]. Un-

fortunately, they still have not demonstrated a ma-

jor improvement over other more classical state-of-the-

art techniques for action recognition [7]. Yet they can

be used in practice in combination with other meth-

ods [102].

The methods discussed above are also applicable

when having available the depth modality. Many works

exist using temporal modeling methods on the skele-

ton data from Kinect [80,11]. These high-level features

extracted from depth maps demonstrated their reliabil-

ity, even outperforming low/mid-level features when the

full body is visible [46]1. Moreover, the skeleton repre-

sentation is low-dimensional data, which makes poten-

tially easier the learning of transitions in HMM and also

reduces the cost of aligning action candidates to class

exemplars in the DTW approach. Regarding template-

based methods, they are also applicable in the depth

cue [61,60]. In [61], the authors extend the energy-based

method from [15] to depth data, extracting the motion-

energy features in the three cartesian planes got from

depth maps separately to later build a spatio-temporal

pyramid cuboid representation of the action videos.

Regarding local features, [41] propose a Bag-of-Visual-

and-Depth-Words framework for gesture recognition.

The authors use the STIP detector separately in RGB

and depth modalities, and then describe the color inter-

est points using HOG and HOF, and the depth interest

points with VFH+CRH2. Then, in order to compute

the global representation of gestures they use spatio-

temporal pyramids and a Bag-of-Words approach. Fi-

nally, the global gesture representation is matched to

the training samples using lazy learning. Despite lo-

cally extracted depth features have been used for ac-

tion/gesture recognition, there is not (to our extent)

any work using dense trajectories in RGBD videos. In

this work, we propose to enrich the description of the

trajectories consisting of the track’s relative position,

HOG, HOF, and Motion Boundary Histogram (MBH)

with a Histogram of Oriented Normals (HON).

1 This is not stated in the published manuscript, but in
an errata document. Check [46] and the errata document
for more detail: http://jhmdb.is.tue.mpg.de/show_file?

filename=Errata_JHMDB_ICCV_2013.pdf
2 The concatenation of the Viewpoint Feature Histogram

(VFH) and Camera Roll Histogram (CRH).

http://jhmdb.is.tue.mpg.de/show_file?filename=Errata_JHMDB_ICCV_2013.pdf
http://jhmdb.is.tue.mpg.de/show_file?filename=Errata_JHMDB_ICCV_2013.pdf
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2.2.2 Gesture recognition using WIMUs

In order to solve the gesture detection and recognition

problem, different approaches are used in the litera-

ture. For instance, [53] introduce a gesture segmenta-

tion (start, middle and end) and train a SVM classi-

fier to predict both gesture phase and class. The pre-

sented results are pretty good but they do not deal with

non-gesture samples, so at the end they are not detect-

ing gestures but recognizing them. In [33], trajectories

from IMUs are computed by taking the second inte-

gral of accelerometer data, obtaining displacement. In

the presented scenario (really short sequences) the ap-

proach performs well, but in a real-case dataset with

large sequences the accelerometer drift will make im-

possible any classification. In [36], a very large dataset

is recorded (25 sessions with 4500 gesture repetitions).

They compare two approaches (accelerometer and EMG)

and an early-fusion of them. In order to model each of

the gestures they use a Hidden Markov Model (HMM)

that they are able to train due to the amount of data

they have. Also using HMM, [4] detect nutrition-related

gestures from a dataset with two subjects, giving good

results. In [47], the same HMM is used, but a pre-

selection stage is defined, in which interesting regions

are selected for further classification. This approach im-

plies a limitation in the number of classification er-

rors since the first classifier is reducing the space. [5]

presents a survey on Activity Recognition using Iner-

tial Movement Units; there, authors detail some of the

methods that have been used in the literature, such as

Decision Trees [9,?], Nearest Neighbors [64] and Ar-

tificial Neural Networks [44,?]. Finally, in the case of

study presented in [20], a large number of variables that

affect gesture recognition with IMUs (e.g. sensor posi-

tion, inter/intra subject variability, types of features)

are studied and quantitative results are presented.

2.2.3 Multi-modal fusion techniques

Focusing on the fusion part, there are two different

strategies: combine the values for each modality at the

beginning of the pipeline (feature-level), named early

fusion or after computing the prediction values for each

of the inputs (decision-level), late fusion.

State of the art late fusion strategies use the scores

given as outputs from early stages. For example, in [39],

authors use product, sum and weight as fusion strate-

gies for probabilities. The work presented in [71] use a

bayesian model based on the scores given by the classi-

fiers. Also other methods such as using a SVM trained

with the concatenation of the outputs is used ([89])

or more complicated strategies as it is shown in [107],

where a top-down approach is used, in a first stage, a

coarse label is generated and then, it is fed to the fusion

module which gives a fine-grained category. Finally, in

[22] two different strategies are compared, a uniform av-

erage and a weighted average, the latter giving better

results.

3 Data, hardware, and settings

This section describes the dataset, the hardware used

to record the data, and the system’s physical settings

and software infrastructure.

3.1 Data

The SARQuavitae Claret dataset consists of a total of

31 sequences of 1-3 minutes of duration each, with 14

elderly people performing different scripted scenarios

that involve the realisation of activities of the daily liv-

ing: “taking pill”, “drinking”, “eating”, and “reading”.

These activities emerge from the interaction with four

different objects: a plastic eating plate that may appear

with a plastic fork, a plastic cup, a photography book,

and a small two-lid pillbox. Yet other irrelevant objects

appear. For instance, a juice tetra-brick or the objects

the elderly bring to the scene, e.g., purses, wallets, or a

walking stick. Table 1 summarizes the most important

aspects of the dataset.

We defined and manually annotated two levels of

annotations: activities and gestures. Whereas the vi-

sion part directly performs recognition on activities, the

wearable module requires more atomic annotations -
we named gestures. The number of gesture classes coin-

cide with the number of activities, those being “spoon-

ful”, “drink”, “turn page”, and “take-pill”. These more

atomic annotations reduce intra-class variability of the

original activities, making the task of the wearable model

easier. Fig. 1 introduces both the visual data (frames

and objects) and inertial data (accelerometer’s gestures).

For the manual annotation task, we first synchro-

nized the streams of the two cameras along with the

one from the sensor. Then, we annotated both activi-

ties and gestures at frame-level. In the case of the ac-

tivities, beginning and end coincide with the interac-

tion with each particular object – an interaction being

considered the intentional manipulation of an object.

For instance, for “eating” the activity starts when the

subject reaches the dish and/or fork, continues during

a variable number of spoonfuls, and finishes when the

subject drops the fork after the last spoonful. On the

other hand, we defined the beginning and the end of

gestures in different ways depending on the class. For
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Modules
Vision Wearable

Task
Action detection Gesture spotting & recognition

(4 actions) (4 gestures)
Hardware 2x RGBD sensors (Kinect) 1x WIMU (Shimmer)

Type of data
RGB Accelerometer
Depth Gyroscope

Magnetometer
No. sequences 31
No. subjects 14
No. frames 3,747 + 3,701 36,858
No. actions (gestures) 86 (162)
General challenges Elderly subjects, uncontrolled behavior

Specific challenges

Ambient light Gesture intra-inter variability
reflections and shadows Device noise

Small objects
Low framerate

Depth noise

Table 1: Summary of the SARQuavitae Claret dataset

“take-pill”, “drink”, or “spoonful”, the gesture begins

when the hand – already touching either the pillbox,

cup, or fork – starts accelerating towards the mouth of

the subject and ends in the very same instant when the

hand starts accelerating again moving away from the

mouth. In the case of “turn page”, the gesture begins

when the page starts to be turned and ends when it has

been completely turned.

The dataset presents several challenges that have to

be addressed:

Objects’ viewpoint variability and size. The objects can

present heavy changes in terms of appearance in the

color cue, due to either partial occlusions or the view-

point. The viewpoint might in fact cause also huge vari-

ations in the objects’ shape observed from depth maps.

Note the variability of the book: opened in Fig. 1(b)

versus closed in Fig. 1(d). What is more, the relatively

small size of some of the objects causes them to be com-

pletely shapeless when observed at 2 meters distance

because of the inherent noise introduced by the Kinect

depth sensor.

Uncontrolled behavior and introduction of external ob-

jects. Despite the scenarios were scripted to ensure a

balance of activities’ examples in the dataset, the par-

ticipants were not always following the given instruc-

tions, thus introducing a certain degree of improvisa-

tion in the scenarios; such as, for example, the entrance

of external objects – like the walking stick in Fig. 1(d).

Shadows and specular surfaces. Because of the light

coming from the window, one of the views presents

shadows and the other mostly reflections on the shiny

table surface. Fig. 1(a-c) and Fig. 1(b-c) illustrate this

phenomenon. This situation requires the implementa-

tion of techniques general enough to adapt to both sit-

uations. However, reflections are much more difficult to

deal with than shadows from the point of view of the

color cue: reflections can cause not only brightness vari-

ations, but changes of color hue. Moreover, the noisiness

of the depth measurements is worsened on shinny sur-

faces. In the view corresponding to Fig. 1(b-d), where

the table surface reflections ambient infrared light com-

ing from the window, we observed the depth readings

to be noisier.

Inter- and intra-variability of activity/gesture examples.

Some of the activities/gestures we are intended to rec-

ognize are quite similar one to another: the arm move-
ment is very similar in “drinking” and “taking pill”

from the perspective of the vision module. In addition,

in the inertial cue, there is also a certain degree of simi-

larity between gestures of different classes compared to

the “no-gesture” – that is, when the participants are

almost steady. On the other hand, the dataset presents

a significant variability within each category regardless

of the data cue utilized. This becomes particularly evi-

dent when observing the recorded instances of “reading

a book”/“turn page”. In addition, dealing with the in-

ertial data becomes even harder when the sensor is worn

by elderly people with shaky hands.

3.2 Hardware

We used two RGBD cameras, each connected to a differ-

ent laptop computer. Among the existing RGBD cam-

eras, we chose the popular Kinect device for its price

and reliability. The device uses a structured IR light



8 Albert Clapés1,2, Àlex Pardo1, Oriol Pujol1, Sergio Escalera1,2

(a) (b) (c) (d)

(e)

(f)

Fig. 1: In (a)-(d), the visual data acquired, with color frames in the top row and depth maps in the bottom row:

(a)-(c) correspond to view #1 and (b)-(d) to view #2; in (e), the objects we are intended to recognize; and, in (f),

examples of the four gestures’ accelerometer readings for the three axis, x (red), y (green), and z (blue)

pattern which is projected to the scene by the emitter

and read back by the IR sensor.

Among existing WIMU sensors, we chose Shimmer,

which consists of accelerometer, gyroscope, and mag-

netometer. An IMU is a high-frequency sampling sen-

sor; and particularly Shimmer is able to sample in a

wide range of frequencies, up to 200Hz. In contrast to

other IMU providing inertial data in millivolts (mV),

the Shimmer device converts the mV to standard units,

that are m/s2 for accelerometer, rad/s for the gyro-
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scope, and Gauss for the magnetometer. The device can

also stream the signals to other devices via Bluetooth.

3.3 Acquisition settings

The Kinect devices were both elevated at 2 meters height

using tripods and pointing to the table in which the

activities took place. In both views, the closest table

point was at 1 meter and the furthest at 1.8 meters.

The devices recorded the scene from complementary

viewpoints with intersecting frustums, so as to obtain

the most complete picture of the scenario. However,

using such setup, IR patterns interfere with each other

causing the devices to provide unreliable depth mea-

sures. The solution adopted was to use two Kinect for

Windows edition, which offered the possibility to turn

on and off the IR-emitter. Since the turn-on/turn-off

have to be synchronous, we implemented a ping-pong

recording setup alternating in time the devices’ acqui-

sition. While this solved the problem, it also reduced

the sampling rate to 4 FPS (2 frames per second and

per view); and the exact time was determined empir-

ically from an experiment explained in more detail in

Section 5.1.1.

The Shimmer sensor was attached with a velcro

strap to the right wrist of each of the participants. We

set the sampling rate to 25Hz with the aim to minimize

delays on the communication due to data processing

bottlenecks. Since the sensor communicates over Blue-

tooth, and this technology has a short range, we used

an Android phone as a bridge for transmitting data

from this Personal Area Network (PAN) to the Local

Area Network (LAN) by emitting over WiFi to a lap-

top computer. The phone is also responsible of time-

labeling the samples using a timestamp. This config-

uration increases the freedom of the user in the envi-

ronment and provides a more realistic setting. Since

the magnetometer measurements depend on the sen-

sor’s orientation w.r.t. the magnetic north, we discarded

these features so as to make the gesture recognition

magnetic-orientation invariant.

4 System

The proposed system consists of two main components,

the vision component and the wearable one. After per-

forming separately, a third component integrates their

outputs in a late fusion fashion, as shown in Fig. 2.

In the vision module, multi-modal dense trajecto-

ries (MmDT) are extracted from the multiple RGBD

streams acquired from the Kinect devices. We refer to

the dense trajectories as “multi-modal” since a HON

Supervised learning

Bag-of-trajectories

Feature 
extraction

Subgesture 
selection

On-line DTW 
prediction

Gesture detection

Buckets

Montecarlo 
TH 

selection

Input 
data

Pre-processed 
data

Models

Thresholds

Multi-modal integration

Activity label

Quantization

Learning of 
multi-view codebooks

Sliding-window 
prediciton

Negatives' mining 

Wearable Module Vision Module

Input 
video

#views

Extraction of 
multi-modal 

dense 
trajectories

Extraction of 
multi-modal 

dense 
trajectories

... ...

...

Action models

Words

Models

Trajectories

Fig. 2: General pipeline of the system consisting of two

modules: a vision module and a wearable module

descriptor computed from the depth modality in ad-

dition to the ones from the color cue. The additional

depth descriptor adds extra shape information to the

appearance or motion information throughout the tra-

jectory.

Following a Bag-of-Words approach, we generate

next a set of codebooks for the different kinds of MmDT

features: relative displacement features of the trajecto-

ries (“Trj” from now on), HOG, HOF, MBH, and HON

features; making a total of 5 codebooks. Codebooks are

multi-view, i.e., they are trained using MmDT from dif-

ferent views.

For the detection, we slide a temporal window over

the videos. A word representation is built for each win-
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dow and descriptor. We then determine its category

using a SVM classifier. The classifier is trained with

examples of each of the activities (positives) altogether

with negative examples.

The wearable module preprocesses the acceleration

and angular velocity data as a first step. Since raw iner-

tial data is inherently noisy, we normalize and filter out

outliers. Then, we extract a set of features that are: raw

data from accelerometer, sorted data from accelerome-

ter, jerk, and complementary filter.

Secondly, the module clusters the data in order to

find a set of representative gesture models. For each

model, we learn a distribution of alignment costs (from

a separate data sample), in such a way during the pre-

diction phase we can simply threshold the alignment

cost of any potentially observed gesture instance and

hence determine if it is one of the gesture classes being

performed. For the computation of thresholds, we use

a random-selection Montecarlo method.

Finally, the fusion module takes the binary outputs

of the vision and wearable components and fuses them.

This is done by applying the intersection. This is a fast

method which improves the performance over the single

modalities.

4.1 Vision module

The vision module implements a pipeline with three

main stages: the feature extraction, the construction

of a mid-level representation, and the sliding window-

based action detection itself. Next, we explain in more

detail each of the stages of the vision pipeline (illus-

trated in Fig. 2).

4.1.1 Multi-modal dense trajectories (MmDT)

The features extracted are based on the dense trajec-

tories from [97]. As in it, trajectories are sampled from

dense optical flow fields3 by tracking the displacement

of pixels during L frames. Moreover, state-of-the-art

appearance and motion descriptors are computed in

N ×N sized image patches along each trajectory which

complement the relative displacement information that

inherently characterizes the trajectory. More precisely,

the trajectory is divided into nx×ny ×nt sub-volumes

in which the descriptors are computed and averaged.

The descriptors are finally concatenated to build the

actual description of the trajectory. This is repeated at

different spatial scales with fixed sampling stride s.

While trajectories are computed solely from the color

cue, we compute the surface normals on the observed

3 Dense optical flow is computed using [32].

Fig. 3: Surface normals computed from a depth map in

which a person tries to reach some objects. Black dots

are 3D points and red lines are vectors representing

surface normals (arrow heads are not drawed for the

sake of the visualization)

depth maps and summarize this information as a his-

togram of oriented normals (HON) that we attach to

the original descriptors (Trj, HOG, HOF, and MBH).

Fig. 4 illustrates the construction of the multi-modal

dense trajectories. HON representation enriches the rep-

resentation of the multi-modal dense trajectories as demon-

strated later in our experiments. Next, we briefly ex-

plain how we compute the HON representation of a

depth map.

Histogram of oriented (depth) normals (HON) Based

the work of [92], we compute a histogram counting the

orientations of normal vectors computed from depth

map. In order to do so, we first transform the map to

a point cloud P in which we have 3D points in “real-

world” coordinates (values representing actual distances

in R3). Then, finding the surface normal 3D vector

at a given point ~p = (px, py, pz) ∈ P can be seen as

a problem of determining the perpendicular vector to

a 3D plane tangent to the surface at p. Let denote

this plane by the origin point q and its normal vec-

tor u = (ux, uy, uz) ∈ R3. From the neighboring points

K of p ∈ P, we first set q to be the average of those

points:

q ≡ p̄ =
1

|K|
∑
p∈K

p. (1)

The solution of u can be then approximated as the

smallest eigenvector of the covariance matrix A ∈ R3×3

of the points in PKp . The sign of u can be either positive

or negative, so we adopt the convention of consistently

re-orienting all normal vectors towards the depth sen-

sor z viewpoint. In Fig. 3, we illustrate the normals

extracted.
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The normal vectors already computed are repre-

sented in cartesian coordinates using 3 parameters. How-

ever, when expressing them in spherical coordinates (ra-

dius r, inclination θ, and azimuth ϕ), one of the pa-

rameters (r) turns out to be constant in our case. This

more compact representation is calculated as follows:

θ := arctan (uz/uy) and ϕ := arccos
√

(u2y + u2z)/ux.

Hence, the final HON representation consists of a two-

dimensional δθ × δϕ histogram, with each bin counting

occurrences of pairs of (θ,ϕ). This structure is vector-

ized an added as the fifth feature of our MmDT frame-

work.

4.1.2 Mid-level Bag-of-Words (BOW) representation

Since MmDT are locally extracted along videos, we

need to compute a mid-level representation for each

temporal segment we are intended to classify later dur-

ing the detection phase. As in [97], we use a BOW-

like approach. For this purpose, we generate multi-view

codebooks of kvis centers using K-Means (with the eu-

clidean distance metric) from a sample of M exam-

ples each, one for each of the five trajectory features:

C = {~Cd}, ∀d ∈ {traj,HOG,HOF,MBH,HON}. From

them, we generate the mid-level representations or words.

The words simply count the frequency of each of the kvis
codes in a particular temporal video segment.

4.1.3 Action detection

In order to perform detections in a video sequence, we

follow a sliding window and detection-by-classification

approach. We choose BOW to be particularly conve-

nient in the sliding window scenario. Having the BOW

representation computed at frame-level, it is possible

to compute the representation of a window centered at

certain frame in an ”integral” efficient way.

Let us denote B ∈ Nkvis×F a matrix-like structure

representing the set of BOW descriptors for a sequence

of F frames as columns and V ∈ Nkvis×F the column-

wise accumulation of B. Then, the representation BOW

representation of a window ~wt centered at frame t can

be computed as follows:

~wt := ~vt+bw2 c − ~vt−bw2 c−1, (2)

where w is the width of the window and ~vt the accumu-

lation of B1:t. Given a window, we obtain |C| different

words – as many as description codebooks.

In order to classify a window, we use a non-linear

SVM with a RBF-X 2 kernel. As in [97], the different

channels are combined at kernel level [93]:

K(~wi, ~wj) := exp

(
−
∑
c∈C

$(c) 1

A(c)
D( ~̂w

(c)
i , ~̂w

(c)
j )

)
, (3)

where D( ~̂wi, ~̂wj) is the chi-square distance between the

pair of normalized words ( ~̂wi, ~̂wj), A
(c) is the mean chi-

square distance among training words in channel c, and

$(c) is a weight assigned to c. The weights sum up to

1. Words are l1-normalized as suggested for the compu-

tation of non-linear kernel maps [95].

Finally, we generate the detection output. Since we

slide temporal windows of different sizes, at a certain

position t windows from different sizes can give differ-

ent responses. Let us define ~Y (i) ∈ N|S|×T
(i)

as the

response matrix for the i-th video, where S is the set of

activity categories and T (i) the duration of the video.

Then, given a category c and temporal instant t, ~Y (i)

is assigned as follows:

~Y
(i)
c, t−bw2 c:t+b

w
2 c

:= 1
{
g
(
~x
(i)
t−bw2 c:t+b

w
2 c

)
= c
}
, (4)

where c is a particular category, 1{·} is the indicator

function, and g(·) is the functional representation of the

multi-class classifier. If the classifier provides a response

of c, the sliding window’s temporal extent centered at

t in the c-th row of ~Y (i) is marked as positive, i.e., 1.

4.2 Wearable module

The wearable module takes accelerometer and gyro-

scope data recorded using the WIMU and learns the

models with the goal of detecting the gestures. First of

all, features are extracted from the raw data, namely,

raw acceleration, “sorte” acceleration, complementary

filter, and “jerk”. The large variability in the execu-

tion of gestures motivates to look for different patterns

under the same named class. In this sense, we apply a

clustering strategy over segmenting gestures in order to

obtain the most representative models for each class.

The detection of gestures in a sequence requires the

elastic comparison of each possible sub-sequence with

all the model gesture patterns. For this task, we use a

dynamic time warping technique. The final detection

of a gesture is obtained when the accumulated aligned

similarity between a sub-sequence and the tested pat-

tern is below an acceptance threshold. The selection

of the threshold is a critical step for obtaining accu-

rate detection results. In the training step one has to

find an acceptance threshold for each candidate ges-

ture. However, if we use multiple models for each ges-

ture the process becomes considerably more complex.
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Fig. 4: The multi-modal trajectories are extracted at different spatial scales. In each spatial scale, dense optical

flow fields extracted from the color cue are used to track the pixels during L frames at most. The trajectories are

represented then by the relative displacements along its duration together with a set of descriptors (HOG, HOF,

MBH, and HON) computed in nx × ny × nt sub-volumes from the descriptors’ corresponding cues

For this reason a Montecarlo optimization technique is

used for establishing the acceptance threshold for each

sub-pattern in each gesture.

Next, we describe the details of this module, corre-

sponding to the left part of Fig. 2.

4.2.1 Feature extraction

Prior to the feature extraction, we smooth the sequences

using a mean filter with kernel size of 10 samples. Er-

rors in the measurements in the form of outliers that

largely deviate from the mean are removed by applying

a thresholding operation on values above or below three

standard deviations.

With the input signal properly preprocessed, we com-

pute a set of features. These features are the following:

Raw accelerometer data Data recorded on the scenario

regarding only to accelerometer. Used in some works as

in [66].

Sorted accelerometer A set of discrete features which

account for a relative rank among the three axis of the

accelerometer is defined. For each sample we assign a

value (-1, 0 or 1) according to the ranking of its value

compared to the other axis, i.e. the axis with the lowest

value is set to -1, the axis with the largest value is set

to 1, and the remaining one to 0.

Complementary filter The complementary filter mixes

gyroscope and accelerometer values in order to get a

smoother signal with less noise and transforming ac-

celeration into rotations. In essence, we transform the

acceleration vector ~a = (ax, ay, az) ∈ R3 of each sample

into the rotation vector, then we apply a low-pass filter

to the accelerometer in order to remove noise, and a

high-pass filter to the gyroscope for removing the drift

(an almost constant component). Then we merge both

measures in order to get the orientation of the sensor.

The rotation vector from the accelerometer is computed

as follows: α := cos−1(ax/||~a||2), β := cos−1(ay/||~a||2),

and γ := cos−1(az/||~a||2). Then, for each sample i we

are able to apply the complementary filter defined on

the next equation:

C(i)
x := σψ(i)

x + (1− σ)α(i), (5)

C(i)
y := σψ(i)

y + (1− σ)β(i), (6)

C(i)
z := σψ(i)

z + (1− σ)γ(i), (7)

where (ψx, ψy, ψz) represent the gyroscope values, while

the value of σ controls the response of the filter. As

demonstrated in [50], the complementary filter reduces

drift and noise presented by accelerometer and gyro-

scope while maintaining the computational complexity

(compared to Kalman Filter [65]).

Jerk We use Jerk, which is the derivative of the accel-

eration ~j(t) = dã(t)
dt . It shows the transitions of the ac-

celeration and is numerically computed using centered

differences [21].
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4.2.2 Sequence similarity using Dynamic Time

Warping

The DTW algorithm aligns two time-series of different

length and returns an alignment cost [96]. This particu-

lar property makes possible to compare sequences with

different duration without losing information. This pro-

cedure is used in two different steps in our system. First,

it will be used as a similarity metric in the definition of

the sub-patterns in each gesture category. And second,

it will be used when checking the sequence against each

sub-pattern, both in the training step for the threshold

selection and then in the test step for the detection.

4.2.3 Sub-gesture selection

As previously commented, we observe a large variability

in the way a gesture is performed. This motivates the

search of a set of models under each gesture category.

In order to perform this task we use K-Medoids algo-

rithm using DTW as a distance function. The training

sequences are segmented in order to obtain the individ-

ual gestures. Then, we compute the DTW alignment

costs for all of them. Because DTW is not a proper

metric (it is not symmetric) we define a pseudo-metric

by adding to the DTW matrix its transpose. The result

of the K-Medoids is a set of kwear training examples.

These examples will be considered as different model

prototypes, Mi, for the gesture.

4.2.4 Gesture detection

The dynamic programming matrix from DTW enables

the reconstruction of the matching path. This provides

the temporal extent of the matched pattern within a

sequence of observations. Because we want to detect

full patterns inside the sequence, we need to set the first

column of the dynamic programming matrix to infinity.

In this way we ensure the best alignment to always start

at the first row. Also, we want the algorithm to detect

the pattern as a sub-sequence inside our full sequence.

For doing so, we set the first row to 0, then we allow a

gesture to begin at any position.

A cell {i, j} of the DTW matrix is computed by

taking the minimum of the three upper-left neighbours

min({i−1, j}, {i, j−1}, {i−1, j−1}) and adding the eu-

clidean distance between the two corresponding frames

‖Pi − Sj‖2. Since the last row of DTW matrix repre-

sents the alignment cost of a certain pattern against a

sub-sequence, we should expect that a gesture will have

lowest value than other parts of the sequence. Then, we

use a threshold per model for detecting the gestures.

Next, we explain Montecarlo optimization for the se-

lection of those thresholds.

Montecarlo threshold optimization As commented, the

main difficulty for learning the acceptance thresholds is

the multiplicity of models for each gesture. The prob-

lem lies in the fact that the ground-truth data only

defines the gesture category. However, because we have

several models per gesture we do not know which model

best represents that gesture in a given sequence. The

naive strategy for solving this problem would be to se-

lect a single acceptance threshold for all models in a

gesture. However this severely hinders the expression

power of each of the models. We opt for learning a dif-

ferent threshold per gesture model. Thus the learning

problem needs to find the best acceptance threshold for

the best model among the models for each gesture. In

order to solve this problem we use Montecarlo optimiza-

tion.

We assume that given a sequence, there will be a

unique model for each gesture, since that sequence is

performed by a single user. Then, for each gesture, we

compute all the DTW matrices associated to all the

models of that gesture. We will have as many matrices

as number of models for each sequence.

Montecarlo optimization is based on randomly gen-

erating solutions of the problem at hand and choos-

ing the solution that optimizes the objective function.

This kind of optimization technique is specially suit-

able when the objective function is easily computed and

the solutions are complex, for example, structured so-

lutions. The convergence speed of this method is very

slow, of the order of the square root of the number of

samples generated.

In our problem the objective function is the F1 score.

Given a set of m sequences and n models per ges-

ture, a solution is composed by m pairs model-threshold

{Mi, τi} out of the n models, one for each of the se-

quences. If we order all the sequences, this is easily il-

lustrated as a graph in which, for each sequence we have

a node for every model. Then, a solution is the combina-

tion of the path that goes through all sequences com-

bined with the corresponding thresholds selection for

each model. An example of the graph is shown in Fig.

5. Observe that each path defines the correspondence

of a single model for each sequence. Thus, a path may

involve the same model applied on different sequences.

For example, in Fig. 5, the blue path considers M1 in

sequence 1 and 2. Given a path, the threshold selected

for each model is the one that maximizes the average

F1 score over all sequences that consider that model.

Each path is then scored according to the average F1

score achieved applying the selected thresholds. The fi-

nal solution corresponds to the path that achieves the

highest average F1 score.
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Path 1 => Avg. F1 for the selection [ (S1,M1), (S2, M1), …, (Sm, M2)]
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Path 3 => Avg. F1 for the selection [ (S1,M2), (S2, M2), …, (Sm, Mn)]

Fig. 5: The montecarlo threshold-selection method

As a practical note, in order to define the range

of thresholds we evaluate for each model, we compute

the DTW matrices corresponding to each model over

each training sequence. Using the annotations of the

ground-truth, we can get the alignment costs of each of

the gestures. We take not only those values but also,

the ones corresponding to the frames close to the end

point defined by the groundtruth. All these values will

be used as positive samples. By doing so, we allow a

certain distortion on the gestures. The parameter that

controls the number of points we take is called toler-

ance and is a percentage over the length of the gesture.

We also consider all values corresponding to negative
points. The range of thresholds to be evaluated goes

from the minimum value of the positive samples up to

the first quartile value of the negative ones.

4.3 Integration module: learning-based fusion

Given a particular time instant, the vision and wearable

modules provide a detection decision for each of the ac-

tivity/gesture classes. We designed a learning-based fu-

sion strategy consisting on stacking a centered window

of size around each predictions of size ωN on a 2ωN -

valued feature vector representation that can be input

to a discriminative classifier:

xv+w = [yv
1 ,y

v
2 , . . . ,y

v
ωN ,y

w
1 ,y

w
2 , . . . ,y

w
ωN ] ,

where [·] is the concatenation operation and yv ∈ {0, 1}
and yw ∈ [0, 1] are prediction values, respectively, from

the vision (v) and wearable (w) module. Note the pre-

diction values from the wearable module are binary,

whereas the ones from the vision one are real-valued

confidences. The latter are calculated as the ratio of

positive binary predictions for different sliding window

sizes divided by the total number of window sizes.

In order to perform the classification, we train a

neural network per activity class, consisting of a 2ωN -

neuron input layer, two fully connected layers and 2-

neuron output. The net is trained using adam optimizer

and cross entropy loss function. For the output layer,

we use a soft-max function.

During the training of each epoch, we feed the net

with 80% positive examples and 20% of negatives. Hence,

the loss function is weighted in order to compensate the

bias introduced by this difference.

5 Results

First, we illustrate the experiments carried out to es-

tablish some settings in the different components of the

system and detail which are the system’s parameters.

We also explain different strategies to fuse the outputs

of the visual and inertial modules. Finally, we illus-

trate the results of the two main modules separately

and eventually the visual-inertial fusion results.

5.1 Settings and parameters

In this section, we first present a preliminary experi-

ment for the IR-emitter’s delay calculation and then we

introduce the parametrization of each system’s module.

5.1.1 IR-emitter turn-on time delay

The blocking turn-on instruction of Kinect for Win-

dows does not ensure the IR light bulb having reached

full power before the acquisition of a new depth frame

– thing that causes erroneous depth map readings. In

order to determine the “real” re-activation time, we

performed the following experiment: we fixed a sen-

sor in an indoor still scene and captured 2,500 depth

maps, selecting one out of those as a reference frame.

Next, we subtracted the reference frame to each of the

rest and calculated for each of those frame differences

the accumulation of absolute differences, i.e. the mag-

nitude of the difference of that frame respect to the

reference. Fig. 6 depicts these magnitudes in function

of the turn-on time the blocking instruction took, as

well as the effect of forcing a turn-on delay or none (0

ms) instead of relying on the instruction’s own opti-

mistic delay. Given the results, and seeking to ensure
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Fig. 6: Error introduced by the IR bulb forcing different

time delays in milliseconds (ms) or none (0 ms)

a balance in the frames’ quality/quantity trade-off, we

decided to force a minimum time delay of 275 ms.

5.1.2 Vision module parameters

In the vision part, we decided to stick to the default

parameters of [97] when possible. Those were the patch

side size N = 32, the sampling stride s = 5, the number

of spatial divisions within a trajectory, nx = ny = 2,

the number of temporal divisions nt = 3, the num-

ber of codes kvis = 4, 000, the sample of trajectories

used to compute the codebooks of size 200K (100K

per view), and SVM regularization parameter set to 1.

These parameters have been largely validated in many

action recognition datasets and thus guaranteed to pro-

vide state-of-the-art results. Notwithstanding, we set

the trajectory length to a lower value of L = 4, more

suited to our framerate than the original value of 15.

This was done after experimentally testing different val-

ues for L in the set {3,4,5}.
Some parameters were fixed also for the compu-

tation of HON descriptors. The radius distance when

computing the normal vectors was set to 2 cm, this

being a standard value used in object recognition sce-

narios [3]. For the construction of the HON histogram,

δθ and δϕ were both set to 5.

For the negative mining of examples in the classifi-

cation, we randomly sampled temporal segments having

less than 0.2 of temporal overlap with activities’ anno-

tations. In particular, we sampled 10 negatives for each

positive example. Moreover, we also included 1M neg-

ative trajectories during the generation of codebooks,

apart from the 200K from the positive examples.

Finally, in order to determine the optimal set of

weights $ to assign to the different modalities when

computing RBF-X 2 kernel during the action detection,

we performed an exhaustive search in the training set.

For this purpose, we generated all the possible 5-sized

vectors of weights that sum up to 1 with incremental

steps of 0.1 and evaluated average classification accu-

racy on the set of pre-segmented action gestures. More-

over, the weights were optimized independently for each

action.

5.1.3 Wearable module parameters

Regarding the wearable module, there is also some pa-

rameters that needed to be validated. One of them is

the parameter that controls the number of clusters (or

prototypes) computed by K-Medoids. This depends on

the complexity of each gesture class. We tested 1, 2,

and 3 prototypes. No more classes are considered due

to the reduced number of instances per gesture class.

When we are reconstructing our gesture predictions

using DTW, it is common to have more than one recon-

struction. This means that there are several matching

paths that reached a cost below the threshold. This phe-

nomenon is caused by having low values along the DTW

matrix spread over their neighbour cells. A parame-

ter regulates the activation of these reconstructions by

thresholding the reconstruction cost. The tested values

were 5, 10, 15, 20, 25, and 30 activations. Moreover, and

in order to avoid short activations, we set a minimum

length for considering a gesture. The values tested are

0, 10, 15, 20, 25, and 30 frames.

A tolerance parameter was introduced in Section 4.2.4

that controlled how many frames around a gesture end

are considered so their values are put inside the pos-

itive bucket. Having a large value here will make our

threshold be too large and then we will let pass a bigger

number of false positives. This value has been experi-

mentally set to 0.2.

Regarding the Montecarlo method, a number of sam-

ples has to be defined. We have set this value to 10K.

As it can be seen in the following section, increasing

the number of paths does not involve a large compu-

tational effort. The expected error rate is E = 1√
n

. By

setting n to 10K, we expect an error rate of 0.01 which

we consider is enough for the system.

5.2 Efficiency and computational cost

The vision module is based on the dense trajectories

framework, which originally runs at 10-12 fps in VGA

video. However, we extended the set of descriptors with

HON, thus involving the computation of surface nor-

mals. The computation of normals is an expensive pro-

cess when done naively, but can be greatly optimized

by parallelizing computations or using approximated

methods. If optimized, this module could run much

faster than the 2-fps acquisition rate of the two Kinects.
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In the case of the wearable module, there are two ex-

pensive processes: DTW matrix computation and Mon-

tecarlo threshold optimization. On the one hand, we

have that the cost of the first is O(n·m), where m is the

length of the model and n the length of the sequence.

DTW matrix computation is not easily parallelizable.

On the other hand, Montecarlo threshold optimization

can be expensive if no optimization is applied. In our

case, we have designed the algorithm in order to first

precompute all the needed values, that is, when com-

puting a path, the algorithm only has to select values,

but do not compute them.

Let us analyze the computational cost of the Mon-

tecarlo method.

Let S be the number of sequences, M the number of

models and P the number of randomly generated paths.

For a gesture, let lg be its length and for a model and

lM the length of each sub-model prototype. Note that

these two quantities define the size of the dynamic time

warping matrix, i.e. lg × lM .

First of all, the reconstruction and the F1-score in-

volving every pair of sequence-model pairs are pre-computed.

The cost of this operations are:

– Dynamic time warping alignment for all models and

sequences: O(S ·M · lg · lM )

– Reconstruction and F1-score computation: O(S ·M ·
lg)

For each of the paths, a model is selected at random

for each of the sequences. Then, the F1-score is com-

puted using the pre-computed reconstruction and the

ground-truth. For each of the P paths we select among

S choices, the cost of this computation isO(P ·S). Given
that pre-computed F1-scores are stored in a hash table,

for a certain sequence-model pair the cost of retrieving

the score is O(1). This makes the global cost O(P · S).

The computational cost of the whole Montecarlo

method is O(P · S)

As a result, the computational cost of all the process

is considering a sequential approach is:

O(S ·M · lg · lM ) +O(S ·M · lg) +O(P · S), (8)

O(S ·M · lg · lM ) +O(P · S), (9)

O(P + (S ·M · lg · lM )) (10)

However, this method is easily parallelizable, both

in generating reconstructions and computing F1-score,

as the computation of each dynamic time warping ma-

trix for each gesture and model is independent of the

rest. Additionally, the global F1-score computation is

also easily parallelized as it is independent of each of

the paths.

As shown in [76], DTW is suitable to run in real-

time since it only has to compute a column for each of

the samples. In this case, having the sub-classes imply

an increase in the number of DTW matrices computed.

However, it could be easily parallelized and thus, the

algorithm test phase could be run on-line.

5.3 Experimental results on SARQuavitae dataset

We validated the proposed system in the SARQuavitae

dataset. We first explain the validation procedure and

then we illustrate the results got by both the individual

modules and the fused results from the fusion module.

In the experiments, we used a leave-one-subject-out

cross-validation (LOSOCV) procedure in order to en-

sure a proper generalization of the methods. Besides, in

order to validate any of the parameters described in 5.1,

we used an internal cross-validation within the training

partition of the LOSOCV.

We used two different metrics in order to quantify

the performances: F1-score and intersection-over-union

(IoU) overlap. During the computation of the F1-score,

we use a 20% of minimum overlap in order to consider

a true positive detection. These results were calculated

at sequence level and averaged within the correspond-

ing LOSOCV’s fold. Then, the final performance was

calculated averaging again the performances of all the

folds.

We separately computed the performance for all the

classes, so we can better illustrate performance issues

and difficulties of the system. Regarding the F1-score,

if neither the groundtruth nor the prediction presented

any activation, we counted the F1-score to be 1.

In the case of IoU overlap, an additional parame-

ter is also taken into account, which is the number of

do-not-care frames. This value regulates the amount

of discrepancy in the borders of the detections when

evaluating respect to the groundtruth. Since, a sys-

tem of this nature does not need a perfect matching

but only a rough detection, we could afford using rela-

tively large do-not-care values. The maximum do-not-

care value used in the later validation is approximately

half of the shorter action’s duration, i.e., 50 frames.

5.3.1 Vision experiments

As a preliminary analysis was to determine somehow

the contribution of the different modalities in the ac-

tion detection task. Since we need to find the best set

of$ weights for each subject, we can average the perfor-

mance of all the weight combinations across the LOSOCV’s

training partitions. The set of weights selected per ac-

tion is illustrated in Table 2. These weights provided
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Modalities
Action name Traj HOG HOF MBH HON Accuracy

Drinking 0.5 0 0 0.3 0.2 91.54%
Eating 0.1 0.1 0 0.4 0.4 86.42%
Reading 0.2 0.1 0.1 0.1 0.5 91.57%

Takingpill 0 0 0.4 0.1 0.5 83.80%

Table 2: Best performing weight combinations for each

of the classes (in terms of accuracy)

us some intuition about the contribution of HON. It

demonstrated to be very relevant for the task of action

recognition and complementary to the other modalities.

Trj and MBH also demonstrated to be quite important,

in contrast to HOF and HOG, with the latter being the

less relevant in our dataset.

Once we had selected the weights, they were used in

the action detection task. In Fig. 7 and Fig. 8, we illus-

trate the performance of the detection, respectively, in

terms of F1-score and IoU overlap. These results show

the performance of the vision component in detecting

quite differs from one action to another. It is able to

more successfully detect “eating” and “drinking” ac-

tions, while not doing so well at “eating” or “taking-

pill”. Our hypothesis is that the vision part is better at

detecting large actions than smaller ones. This causes

overlap values to be larger, whereas in terms of F1 the

detector is highly penalized.

5.3.2 Wearable experiments

Regarding the use of K-medoids and Montecarlo meth-

ods in order to have more than one model per class, we

performed the same experiments with both modalities.

In Fig. 9 and Fig. 10, we can see the improvement, re-

spectively, over to Fig. 11 and 12. This is due to the

better representation obtained by establishing differ-

ent models per class. Given the nature of this dataset

(recorded in the wild, without constraints), the intra-

class variability is expected to be large. From the results

presented in the supplemental material, it is observed

that this happens even with the better representing fea-

tures we have computed. From these results, we demon-

strate the convenience of computing sub-classes in order

to better model the gestures.

From the final results, one can see the classifier is

outperformed in most off the cases by the wearable

module, something we expected given the difficulties

presented by the module in terms of intra-class variabil-

ity. The most difficult class in terms of F1-score (con-

cerned to the number of detections) is taking-pill. As it

has been shown in the supplemental material, it is the

one that is more confused against the others. Nonethe-

less, eating and drinking, that are the ones obtaining

greater F1-scores, were the ones with less confusion as

observed in the distance matrices.
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Fig. 7: F1-score for each class (and mean) and different

minimum overlap values
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Fig. 8: Overlap for each class (and mean) and different

do-not-care values

5.3.3 Integration experiments

The two modules, vision and inertial, are able to pro-

vide binary detection outputs for each of the classes in

a particular time instant. Given that, intersection and

union are possible alternatives to our learning-based fu-

sion strategy to come up with the final integrated de-

tection. We hence report these as baseline results to

compare the learning-based integration.

Recall our goal is to detect activities, not precise

temporal localization. Nonetheless, we analyze first over-

lap results. In Table 3 and Table 4, we show the results

of the three different integration strategies in terms of

both F1-score and IoU overlap respectively. We found

the vision module performing individually was the most

successful in 3 out of 4 classes. Nonetheless, the neural

network is able to improve by 2% respect to the vision

module.

More importantly, learning-based approach improves

F1-score results respect single modalities or baseline



18 Albert Clapés1,2, Àlex Pardo1, Oriol Pujol1, Sergio Escalera1,2

0.0 0.2 0.4 0.6 0.8 1.0
Min. overlap (% frames)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-s
co
re

Gesture detection + recognition (F1-score) with Clustering
takepill
drink
turnpage
spoonful
mean

Fig. 9: F1-score for each class (and mean) and different

minimum overlap values
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Fig. 10: Overlap for each class (and mean) and different

do-not-care values

integrations for all the classes except for “Drinking”
(-4%) and obtained a particularly large improvement

for “Taking-pill” (+12%) and “Reading” (+10%). In

average, the learning-based fusion improves the vision

module by 6%.

For the sake of completeness, we also illustrate the

effect of varying the minimum overlap for TP in de-

tection and the don’t care size (varying the number of

frames) have on learning-based (Fig. 13-14), intersec-

tion (Fig. 15-16), and union (Fig. 17-18) integration

strategies.

6 Conclusion

We proposed a two-module system combining two Kinect

devices together with a Shimmer in order to recognize

activities of the daily living in a real-world scenario. The

Kinect devices were placed one in front of another with

intersecting frustums, so as to have an occlusion-free

view of the scenario. We extracted first MmDT features
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Fig. 11: F1-score for each class (and mean) and different

minimum overlap values having one model per class
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Fig. 12: Overlap for each class (and mean) and different

do-not-care values having one model per class

and bagged them into multi-view codebooks, one for

each kind of description. In order to perform the detec-

tion in this part, a sliding approach was used. The BOW

representation allowed to compute each window’s BOW

representation in an “integral” efficient way. For classi-

fication of words, a multi-class SVM with X 2-kernel was

utilized in order to combine Traj, HOG, HOF, MBH,

and HON descriptions at kernel level. The egocentric

module, in charge of performing gesture recognition,

used a Shimmer sensor placed on the elderly’s domi-

nant wrist. In order to recognize the gesture, we first

pre-processed the data in order to extract accelerome-

ter, rotation angles, and jerk features. Then, we select

a set of models from the sequences. Those models were

used to obtain alignment distances (costs) by means

of a DTW algorithm. During the process of detecting

the gestures, a DTW performed the alignments respect

to the models and determined new gestures being per-

formed by comparing on-line alignment costs to a set

of learnt cost thresholds.
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Single modalities Integration
Vision Wearable Intersection Union Learning-based

Taking-pill 0.93 0.61 0.87 0.51 0.54
Drinking 0.89 0.42 0.80 0.56 0.67
Eating 0.38 0.27 0.27 0.27 0.33

Reading 0.58 0.16 0.57 0.30 0.60
TOTAL (mean) 0.69 0.36 0.63 0.41 0.53

Table 3: Results in terms of overlap, for each of the classes and for all the integration strategies

Single modalities Integration
Vision Wearable Intersection Union Learning-based

Taking-pill 0.22 0.04 0.00 0.08 0.34
Drinking 0.46 0.32 0.30 0.37 0.42
Eating 0.48 0.26 0.06 0.22 0.49

Reading 0.05 0.10 0.04 0.05 0.20
TOTAL (mean) 0.30 0.18 0.10 0.18 0.36

Table 4: Results in terms of F1-score, for each of the classes and for all the integration strategies

The system was validated in dataset with actual el-

derly volunteers from the SARQuavitae Claret elder

home, who participated performing different scripted

scenarios involving the realization of some activities

such as “taking pill”, “drinking”, “eating”, and “read-

ing”. The learning-based integration proved to be the

most successful strategy for activity detection, achiev-

ing better F1-score than single modalities or baseline

integrations (union/intersection).

In fact, the results in terms of F1-score and IoU

overlap indicate that our system is more effective for

action detection than temporally predicting their tem-

poral extent. For the latter task, the vision module per-

forms better. The vision module uses action groundtruth

annotations, while the wearable module uses gesture

annotations. And hence, when fused, the temporal ex-

tents of actions predicted by the integration no longer

coincide with the action groundtruth. Nonetheless, de-

termining if the elder took the medication is far more

important in a system of this kind than knowing the

exact time frames in which the action occurred.

Regarding other contributions, we found the depth

cue to have an important contribution to MmDTs. On

the wearable side, the clustering strategy shown also its

effectiveness.
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Sala, X., Baró, X., Pujol, O., Angulo, C., Escalera,
S.: Probability-based dynamic time warping for gesture
recognition on rgb-d data. In: Advances in Depth Image
Analysis and Applications, pp. 126–135. Springer (2013)

12. Ben Hadj Mohamed, A., Val, T., Andrieux, L., Ka-
chouri, A.: Assisting people with disabilities through
kinect sensors into a smart house. In: Computer Medical
Applications (ICCMA), 2013 International Conference
on, pp. 1–5. IEEE (2013)

13. Blank, M., Gorelick, L., Shechtman, E., Irani, M., Basri,
R.: Actions as space-time shapes. In: Computer Vision,
2005. ICCV 2005. Tenth IEEE International Conference
on, vol. 2, pp. 1395–1402. IEEE (2005)

14. Bo, A., Hayashibe, M., Poignet, P.: Joint angle estima-
tion in rehabilitation with inertial sensors and its inte-
gration with kinect. In: EMBC’11: 33rd Annual Interna-
tional Conference of the IEEE Engineering in Medicine
and Biology Society, pp. 3479–3483. IEEE (2011)

0.0 0.2 0.4 0.6 0.8 1.0
Min. overlap (% frames)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

Fusion (F1-score) using Intersection
drinking
reading
eating
takingpill
mean

Fig. 15: F1-score for each class (and mean) and different

minimum overlap using Intersection as the integration

strategy

0 10 20 30 40 50
Don't care (# frames)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0
O
ve
rla
p

Fusion (Overlap) using Intersection
drinking
reading
eating
takingpill
mean

Fig. 16: Overlap for each class (and mean) and different

do-not-care values using Intersection as the integration

strategy

15. Bobick, A.F., Davis, J.W.: The recognition of human
movement using temporal templates. Pattern Analysis
and Machine Intelligence, IEEE Transactions on 23(3),
257–267 (2001)

16. Booranrom, Y., Watanapa, B., Mongkolnam, P.: Smart
bedroom for elderly using kinect. In: Computer Sci-
ence and Engineering Conference (ICSEC), 2014 Inter-
national, pp. 427–432. IEEE (2014)

17. Botia, J.A., Villa, A., Palma, J.: Ambient assisted living
system for in-home monitoring of healthy independent
elders. Expert Systems with Applications 39(9), 8136–
8148 (2012)

18. Bouchard, K., Bilodeau, J.s., Fortin-simard, D.,
Gaboury, S.: Human Activity Recognition in Smart
Homes Based on Passive RFID Localization (2014)

19. Brendel, W., Todorovic, S.: Activities as time series of
human postures. In: Computer Vision–ECCV 2010, pp.
721–734. Springer (2010)

20. Bulling, A., Blanke, U.L.F., Schiele, B.: A Tutorial on
Human Activity Recognition Using Body-Worn Inertial
Sensors 46(3), 1–33 (2014)

21. Casale, P.: Approximate ensemble methods for physical
activity recognition applications. ELCVIA: electronic



Action detection fusing multiple Kinects and a WIMU: 21

0.0 0.2 0.4 0.6 0.8 1.0
Min. overlap (% frames)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

F1
-s

co
re

Fusion (F1-score) using Union
drinking
reading
eating
takingpill
mean

Fig. 17: F1-score for each class (and mean) and different

minimum overlap values using Union as the integration

strategy

0 10 20 30 40 50
Don't care (# frames)

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

O
ve
rla
p

Fusion (Overlap) using Union
drinking
reading
eating
takingpill
mean

Fig. 18: Overlap for each class (and mean) and differ-

ent do-not-care values using Union as the integration

strategy

letters on computer vision and image analysis 13(2),
22–23 (2014)

22. Chang, S.F., Ellis, D., Jiang, W., Lee, K., Yanagawa,
A., Loui, A.C., Luo, J.: Large-scale multimodal semantic
concept detection for consumer video. In: Proceedings of
the international workshop on Workshop on multimedia
information retrieval, pp. 255–264. ACM (2007)

23. Chattopadhyay, P., Roy, A., Sural, S., Mukhopadhyay,
J.: Pose depth volume extraction from rgb-d streams for
frontal gait recognition. Journal of Visual Communica-
tion and Image Representation 25(1), 53–63 (2014)

24. Chen, C.C., Aggarwal, J.: Modeling human activities
as speech. In: Computer Vision and Pattern Recogni-
tion (CVPR), 2011 IEEE Conference on, pp. 3425–3432.
IEEE (2011)

25. Clapés, A., Reyes, M., Escalera, S.: Multi-modal user
identification and object recognition surveillance sys-
tem. Pattern Recognition Letters 34(7), 799–808 (2013)

26. Crispim, C.F., Bathrinarayanan, V., Fosty, B., Konig,
A., Romdhane, R., Thonnat, M., Bremond, F.: Evalua-
tion of a monitoring system for event recognition of older
people. In: Advanced Video and Signal Based Surveil-

lance (AVSS), 2013 10th IEEE International Conference
on, pp. 165–170. IEEE (2013)

27. Daponte, P., De Vito, L., Sementa, C.: A wireless-based
home rehabilitation system for monitoring 3D move-
ments. MeMeA 2013 - IEEE International Symposium
on Medical Measurements and Applications, Proceed-
ings pp. 282–287 (2013). DOI 10.1109/MeMeA.2013.
6549753

28. Delachaux, B., Rebetez, J., Perez-Uribe, A., Mejia,
H.F.S.: Indoor activity recognition by combining one-
vs.-all neural network classifiers exploiting wearable and
depth sensors. In: Advances in Computational Intelli-
gence, pp. 216–223. Springer (2013)

29. Dell’Acqua, P., Klompstra, L.V., Jaarsma, T., Samini,
A.: An assistive tool for monitoring physical activities
in older adults. In: Serious Games and Applications for
Health (SeGAH), 2013 IEEE 2nd International Confer-
ence on, pp. 1–6. IEEE (2013)

30. Dubois, A., Charpillet, F.: Human activities recognition
with rgb-depth camera using hmm. In: Engineering in
Medicine and Biology Society (EMBC), 2013 35th An-
nual International Conference of the IEEE, pp. 4666–
4669. IEEE (2013)

31. Escalera, S., Bar, X., Gonzlez, J., Bautista, M.A.,
Madadi, M., Reyes, M., Ponce, V., Escalante, H.J.,
Shotton, J., Guyon, I.: Chalearn looking at people chal-
lenge 2014: Dataset and results. In: ECCV Workshops
(2014)
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A Appendix: Wearable Module feature
comparison

In Section 4.2, several features are detailed. They are used
to describe the gestures performed among different magni-
tudes. Here, an extensive comparison between different fea-
tures’ combinations is presented, with the objective of demon-
strating which is the most suitable for performing gesture
recognition using the SAR-Quavitae Claret dataset.

Given the set of features described in the article, all their
possible combinations have been generated. For each feature
set, we have computed the distances between each of the pre-
segmented gestures, using DTW as a metric.

Each of the matrices represent the average distance be-
tween segmented gestures, using leave-one-subject-out strat-
egy. That is, for each subject, all his gestures are compared
to the remaining ones. Finally, the average of all the dis-
tances is computed. The objective is to find the combination
that is more discriminative. This means that, the best fea-
tures will be those that minimize the distance between equal
classes (diagonal of the matrices), while maximizing the dis-
tance against different classes.

In most of the combinations showed, one can see that
“taking-pill” and “turn-page” gestures are easily confused,
while “drink” and “spoonful” are, most of the times, dis-
tant from the other classes. Looking the matrices with more
detail, Figures 20b,21a,21b, and 23a lead us to the conclu-
sion that Raw accelerometer is crucial for representing the
data correctly. Regarding to those combinations only using
a pair of features, Figures 19a, 19b, and 20a show us that
these combinations are usually enough to discriminate cor-
rectly “drink” and “spoonful” classes, but are not enough
for “taking-pill” and “turn-page”. The same happens in Fig-
ures 22a and 22b, where “taking-pill” and “turn-page” are
confused with “spoonful”. The combination that is able to
discriminate correctly “turn-page”, “drink”, and “spoonful”
is the one showed in Figure 23b. However, “taking-pill” is still
close to the other classes. This is the effect of the variability
in the performance of the gesture.

Finally, thanks to this deep analysis, we can state that
the most suitable combination of features for the presented
dataset is the one including Raw accelerometer, Sorted ac-
celerometer, Complementary filter, and Jerk. However, the
distance matrices presented in this section glimpses some is-
sues related to the intra-class variability. Nevertheless, our
hypothesis is that this is due to the reduced set of data avail-
able, that hinders the representativeness of the gestures.

(a) (b)

Fig. 19: In (a), raw accelerometer + sorted accelerometer. In
(b), raw accelerometer + complementary accelerometer

(a) (b)

Fig. 20: In (a), raw accelerometer + jerk. In (b), sorted ac-
celerometer + complementary filter

(a) (b)

Fig. 21: In(a), sorted accelerometer + jerk. In (b), comple-
mentary filter + jerk

(a) (b)

Fig. 22: In (a), raw accelerometer + sorted accelerometer
+ complementary filter. In (b), raw accelerometer + sorted
accelerometer + jerk
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(a) (b)

Fig. 23: In (a), sorted accelerometer + complementary filter
+ jerk. In (b), raw accelerometer + sorted accelerometer +
complementary filter + jerk
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