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Abstract
A new approach for 2D to 3D garment retexturing is pro-
posed based on Gaussian mixture models and thin plate
splines (TPS). An automatically segmented garment of an
individual is matched to a new source garment and ren-
dered, resulting in augmented images in which the tar-
get garment has been retextured by using the texture of
the source garment. We divide the problem into garment
boundary matching based on Gaussian mixture models
and then interpolate inner points using surface topol-
ogy extracted through geodesic paths, which leads to a
more realistic result than standard approaches. We eval-
uated and compared our system quantitatively by mean
square error (MSE) and qualitatively using the mean opin-
ion score (MOS), showing the benefits of the proposed
methodology on our gathered dataset.

1 Introduction
As shopping for garments is increasingly moving to a dig-
ital domain, the next step after just seeing the desired
clothes is to virtually try them on. The focus of this paper
is an application for garment retexturing where the im-
ages of the person are captured with a Kinect-2 RGB-D
camera. There are several steps between taking an RGB-
D picture and displaying the final result with a retextured
garment. These steps involve segmentation of the gar-
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ment, garment matching and surface retexturing. The
novelty of this paper lies in the retexturing part, which
involves several challenges. First, a coordinate map must
be created between the image of the new texture and the
image that is being retextured. This problem is especially
difficult in the case of non-rigid and easily transformable
surfaces like clothes. Another challenge is to shade the
new texture correctly. It is possible to use the colour in-
formation of the original image, but the lighting, intensity
and the original colour of the surface are usually not pre-
viously known and must be estimated.

There exist several standard methods for projecting tex-
tured surfaces on screen. The simplest shading meth-
ods work only by using surface normals independently
without considering the overall surface, attempting to es-
timate the brightness of the surface given some known
viewer and light source direction. Examples of this kind
of method are the Gouraud shading, Phong shading, and
Blinn-Phong shading [30]. However, these methods do
not support shadows.

The proposed automatic retexturing method, after the
segmentation stage uses point set registration method [21]
to find correspondence between the outer 2D contours
of the person and the target garment. After the contour
matching, the surface topology of the flat 2D garment is
approximated using geodesic distance in a global closed
form solution using thin plate spline (TPS) [6] and the fi-
nal result is superimposed onto the segmented area.

The rest of the paper is organised as follows: Section 2
discusses related work in the field of object retextureing,
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Figure 1: Overview of the proposed retexturing method.

Section 3 gives a detailed description of the proposed re-
texturing method and Section 4 shows and compares the
results obtained by using two different mapping methods.
Finally, Section 5 concludes the paper.

2 Literature review
Due to the fact that an actual try-on of clothes is time-
consuming, a virtual alternative has always been de-
sired, and many researchers have been engaged in de-
veloping novel strategies and systems to perform such a
task [32, 47, 17, 8, 29]. It requires scanning, classifi-
cation of the body based on gender and size, 3D mod-
elling [44, 16, 12] and visualisation. Constrained texture
mapping and parametrisation of triangular mesh are some
popular examples, although they suffer from some defi-
ciencies such as finding the parameter values and manual
adjustments [26, 24]. Many researchers have also sug-
gested methodologies for visually fitting garments onto
the human body based on dense point clouds [18, 3].

The matching problem stage can be defined as a cor-
respondence problem, which incorporates pair-wise con-
straints. Hence, it is often solved with a graph matching
approach [19, 46, 11], which is especially suitable for de-
formable object matching. Furthermore, additional con-
straints can be added to the framework in order to reduce
the computation time (e.g. clearly, each cloth type is con-
strained to the body part where it is dressed), or in order
to take problem-specific aspects into account.

There exist various techniques for conducting a map-

ping from 2D image texture space to a 3D surface. Some
examples are intermediate 3D shape [5], direct drawing
onto the object [15], or using an exponential fast march-
ing method by applying geodesic distance [37, 34]. Many
researchers have devoted special attention trying to en-
hance the realism of virtual garment representation during
the last decade [7]. One of the most frequently used tex-
ture fitting methods was proposed by Turquin et al. [35],
which allows the users to sketch garment contours directly
onto a 2D view of a mannequin. The initial algorithm has
been further enhanced by many other researchers [40, 43].

Another popular way of mapping a 2D texture onto a
3D surface is by using a single image [45]. As proposed
by [46], an estimation of a 3D pose and shape of the man-
nequin is followed by constructing an oriented facet for
each bone of a mannequin according to angles of the pose,
and projecting the 2D garment outlines into correspond-
ing facets. Eckstein et al. [10] proposed a constrained tex-
ture mapping algorithm, which can be used for 2D and
3D modelling, and multi-resolution texture mapping and
texture deformation, but it may produce a Steiner vertex
effect when a simple solution does not exist. Kraevoy et
al. [22] introduced a method based on iterative optimisa-
tion of a constrained texture mapping method. In their
method, it is a requirement to specify the corresponding
constraint points on the grid model and texture image, the
parametrised mesh. Later, Yanwen et al. [39] reported a
constrained texture mapping method based on harmonic
mapping, with interactive constraint selection by the user;
the method produces high efficiency, real-time optimi-
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Figure 2: Short and long sleeve examples for contour cor-
respondences obtained using point set registration. Red
contour corresponds to CR and blue contour corresponds
to CF .

sation, and adjustment of mapping results. The block
based constrained texture mapping methods are also used
in order to bring higher speed and lower computational
costs [25].

3 Retexturing approach

In this paper, we propose a new automatic retexturing
method covering the stages of segmentation, 2D to 3D
garment matching and rendering. We use a Kinect 2 de-
vice to capture scene information. As preprocessing, we
use RGB, depth and infrared images of the Kinect and
segment out the garment from the background. The seg-
mented depth image is used to compute retexturing from
a source 2D flat garment image. We reduce the problem
of surface point matching to an interpolating problem by
using garment contour matching. The interpolation pro-
cess takes surface topology into account using geodesic
distance in a global closed form solution using thin plate
spline (TPS) [6]. Thus, 2D garment contours are matched
beforehand applying point registration based on Gaussian
mixture models [21]. Finally the resulting mapped source
image is sampled, and the segmented area can be super-
imposed using these colours. As a result, realistic render-
ing is provided showing both qualitative and quantitative
advantages in relation to state-of-the-art method alterna-
tives based on thin-plate splines with geodesic interpola-
tion. The proposed retexturing method is visualised in
Fig. 1.

3.1 Segmentation

In order to make accurate measurements in real world
units, we standardise the coordinate system of body
and garment models according to real world coordinates.
Moreover, rich visualisation includes aligned image data
(RGB and depth images), so as to provide animations as
close as possible to the real scenario [19].

The first step of the proposed retexturing method is seg-
mentation of garments from the background. It is neces-
sary to extract a set of points from the image correspond-
ing to the area being retextured. The proposed method
works under the following assumptions: the area to be re-
textured is a shirt (or some other initially known garment)
worn by a person, the person is assumed to be standing
in front of the camera and is assumed not to occlude the
area of interest with his/her hands. The segmentation is
done by first extracting pixels and the skeleton of the body
using Kinect SDK. Skeleton joint locations, along with
some artificial joints, are used to train the GrabCut algo-
rithm [28] and select areas with desired joints. In the case
of the reference 2D image, the GrabCut algorithm is also
applied initializing the background color with the pixels
on the borders of the image. The output of the grabCut
algorithm is a binary mask, where the set of points are
comprised of the outline of the binary mask. The initial
point density is related to image resolution and area oc-
cupied by the garment. Typically the outline consists of
few thousand points. This simple automatic segmenta-
tion approach worked accurately in our dataset. In case
of other non-controlled scenarios, any other automatic or
semi-automatic segmentation approach could be consid-
ered, such as deep learning based garment segmentation
[23] or pose guided garment boundaries. For cases where
segmentation failed, we manually guided GrabCut to get
the binary mask of the garment.

3.2 Outer contour matching

Contour matching can be viewed as a point set regis-
tration problem, where a correspondence must be found
between a scene and a model. A few of the most well
known methods for point set registration are iterative clos-
est point [4], robust point matching [31, 14], and Co-
herent point drift [27] algorithms. For our purposes, a
correspondence must be found between highly deformed
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Figure 3: Comparing Euclidean to geodesic distace in
TPS. TPS finds a mapping between two point sets based
on known correspondences. In this image we consider
such a mapping between two 2D example lines where end
points CR are matched with CF . As can be seen, point xi
has equal Euclidean distance DE to points CR1 and CR2 .
In this case, mappingWE does not take line topology into
account, causing a wrong interpolation where points on
the right hand side of WE(xi) get much denser than the
points on its left hand side. This problem can be solved
by using geodesic distance DG in the mapping WG.

shapes. Out of available algorithms, we have chosen to
use non-rigid point set registration using Gaussian mix-
ture models (GMM) [21] because of its accurate fitting
under different conditions and fast execution time. Addi-
tionally, Gaussian mixtures provide robust results even if
the shapes have different features, such as different neck
lines, hand positions and folds.

Let’s define the contour of a garment on a real person
as CR and the contour of the flat garment as CF . The aim
is to create a correspondence between contour models CR

and CF .
In the GMM point matching algorithm, the point sets

are represented as Gaussian mixture models. Instead of
assuming a one-to-one correspondence based on the near-
est neighbour criterion, one-to-many relaxations are used
to allow for fuzzy correspondences, also known as soft
assignment. The idea is to assume that each model point
corresponds to a weighted sum of the scene points, instead
of the closest scene point alone. The weights are propor-
tional to a Gaussian function of the pairwise distances be-
tween the moving model and the fixed scene. The method
works by dawning a statistical sample from a continuous
probability distribution of random point locations. After-
wards the point set registration problem is viewed as an
optimisation problem, meaning that a certain dissimilarity
measure between the Gaussian mixtures constructed from

the transformed model set and the fixed scene set is min-
imised based on L2 distance between the mixtures [21].

Before finding the corresponding points between the
shapes, the contours point sets are reduced to 400 points.
Afterwards, the point set x and y frame coordinates are
normalised in the range [0,1]. Essentially the used method
provides information about howCR has to be transformed
to match CF . Outer contour matching examples are
shown in Fig. 2.

3.3 Inner contour matching
Inner contour matching refers to the process of finding
correspondence points between the body surface and the
2D flat garment in order to assign to each body point a
colour from the garment. This process is mainly a dif-
ficult task due to, first, the lack of depth information for
the 2D flat garment and the lack of texture for the depth
image, and second, dissimilar textures for the source 2D
flat garment and target put-on garment. Therefore feature
based matching is not applicable. Conformal based ap-
proaches like [36, 42] fail due to the different topologies
of the surfaces.

In order to solve this problem efficiently, we first gen-
erate a triangulated 3D mesh based on the depth image of
the segmented area. To have a smooth shape at the bound-
aries of garment, we apply morphological opening using
disk structuring element type with mask size of 5 to the
binary mask. A solution can be obtained by finding an
affine deformation matrix for each face triangle to bring
both source and target surfaces into alignment according
to the matched points of the outer contours. However,
we cannot guarantee a perfect matching for near contour
points in such a solution due to different surface topolo-
gies and depth camera noise in the contours. Instead,
we propose to use thin plate splines (TPS) [6] as a so-
lution in closed-form based on a radial basis kernel. Let
X = {x1, ..., xN} ∈ R3 be the set of all points belonging
to the segmented and discretized body surface Ω. Then, a
mapping from xi to the source image is computed through

W (xi) =

n∑
j=1

ωjκ(‖xi − CRj
‖), (1)

where ω is a set of trained coefficients based on CR and
CF , κ(d) = d2 log d is a radial basis kernel and n is

4



the number of contour points. This basic formulation is
based on Euclidean distance among the points which is
not applicable for our problem since contour points do not
cover all the surface; besides that, Euclidean distance does
not describe the surface topology. Instead we propose a
geodesic-based distance to include surface topology. We
show this idea in Fig. 3.1.

Since we apply discretized body surface Ω, the Dijk-
stra algorithm can be used to compute the shortest dis-
tance from xi to eachCRj

, j ∈ {1..n}. However, we get a
stairstep-like shortest path which introduces some amount
of error in the distance, no matter how much we refine
mesh. Instead, we follow the fast marching algorithm
of [9] to compute a fast and accurate approximation of
geodesic distance. The fast marching algorithm is closely
related to the Dijkstra algorithm with the difference that it
satisfies the Eikonal equation ‖∇U(x)‖ = 1/s(x), x ∈ Ω
to update the graph where ∇U(x) is the gradient of the
action map U and s(x) is a positive outwards speed func-
tion at point x. U(x) is a function of time at point x that
describes the evolution of the surface with respect to s(x)
and surface gradient. We assume the surface is differen-
tiable at all points. Starting from xi, at each iteration, the
algorithm sweeps outwards one grid point with respect
to s(x) to locate the proper grid point to update. Then
geodesic distance can be computed for two vertices vi and
vj from the shortest path L = {L1, ..., Lm} by

Γ(vi, vj) =

m−1∑
l=1

‖Ll − Ll+1‖ (2)

To compute geodesic distance efficiently, we set a flag for
cell dij of the distance table as 1 if vertices vi and vj
already exist on a larger optimum path, avoiding recom-
puting the optimum path for them.

Then we rewrite the TPS formulation to compute the
coefficient matrix ω as

ω =

[
K̇n×n + λI [1|CRn×3 ]
[1|CRn×3 ]> 0

]−1
(n+4)2

[
CFn×3

0

]
(n+4)×3

,

(3)
where K̇ij = Γ(CRi , CRj )2 log Γ(CRi , CRj )∀i, j ∈
{1, ..., n}, i 6= j. λI is a regularization term and is
added to the kernel K̇ where I is the identity matrix and
λ ∈ R. λ values close to zero make the kernel sensitive
to wrong correspondences, and values far from zero tend

to an affine transformation. We set λ to -1000, and by do-
ing so, the visualization becomes more realistic and less
noisy.

Afterwards, a solution can be achieved by applying
trained coefficients as

W = [K̈N×n|1|XN×3]ω (4)

where K̈ij = Γ(Xi, CRj )2 log Γ(Xi, CRj ). Matrix W
includes warped points to the 2D shirt image. We assign
each point the colour of its corresponding pixel from the
shirt image.

3.4 Shading

The shading effect of the garment is achieved using an
adaptation of method [2] which is an automatic technique
for garment retexturing and shading, where the shading
information is acquired from Kinect 2 infrared informa-
tion and is superimposed on the inner shape results. It
is worth noticing that shadow mapping on the garment is
not the main contribution of this paper, and thus its us-
age and coverage are limited to the extent demanded for
visualising the results illustrating the effectiveness of the
proposed mapping method.

The general procedure for obtaining the final visualisa-
tion is as follows. The point cloud corresponding to the
area of interest provided by the Microsoft Kinect 2 camera
is triangulated and rendered as described in the previous
section. The image created as a result of mapping in the
previous steps is used as a texture image, such that each
vertex corresponds to a point on the image. Afterwards,
the rendered image is modified by the corresponding in-
frared values for each pixel. Finally, the segmented area
in the Kinect frame is replaced by the colour information
from the previous step.

In order to enhance the quality of the representation,
the point cloud is preprocessed before rendering, since it
usually is noisy. More clearly, smoothing the depth image
with a Gaussian filter is considered, which, according to
our experiments, significantly improves the results.
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(a)

(b)
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Figure 4: Sample images used in our dataset. a) Garments used in the first data set, b) Garments with landmarks used
in the second dataset, c) People who participated in creating the first data set.

4 Experimental Results and Discus-
sion

In order to present the results, first we describe the setup
of the experiments in terms of data, methods and parame-
ters and evaluation metrics.

4.1 Setup
The proposed retexturing method was tested on an im-
age database taken using the Kinect 2 RGB-D camera.
According to [38], Kinect 2 can capture frames starting
from 0.5 meters and has depth accuracy error smaller
than 2 mm in the cater part of the frame. The error in-

creases towards edges of the frame, and it also increases
with greater measurement distances. The best distance
for scanning objects is the 0.5 to 2m range. To achieve
the best depth resolution, the people were scanned at a
distance of 1.5 to 2 meters where the error in the horizon-
tal and vertical plane is the smallest. Each image contains
a person facing the camera in a pose that does not sig-
nificantly occlude the worn garment. The garments seg-
mented from the original database were retextured using
another database consisting of images of flat shirts. The
flat shirt database was captured with various cameras pro-
viding decent quality images, as depth was not required.

The first data set contained 91 retextured images with
14 people (11 males and 3 females). This data set used
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Figure 5: a) Landmarks used in the second dataset on the flat garment (right) and landmark locations after putting the
garment on as ground truth. Landmarks are shown by indices for comparison purposes. b) Retextured garment and
estimated landmarks (left) and displacement arrows to ground truth landmarks (right) for computing error.

Table 1: Mean Opinion Score (MOS) comparison
Method T-shirt Votes T-shirt Percentage Long sleeve Votes Long sleeve Percentage

NRICP [1] 77 2.68% 32 3.69%
CPD [27] 485 16.88% 245 28.23%
GM-TPS 2311 80.44% 591 68.09%

13 flat garments (4 long sleeve garments and 9 t-shirts).
The second data set contained 39 retextured images with
5 people (4 males and 1 female). This data set used 8
flat garments (4 long sleeve garments and 4 t-shirts). We
physically attached 16 landmarks to garments in the sec-
ond dataset. The location of the landmarks was chosen
empirically with the aim of visually demonstrating the
texture shifts for different parts of the garment. Matching
the landmarks was a manual process, therefore we limited
ourselves to 16 landmarks. This comparison was done in
order to determine the retexturing precision by retexturing
the same garment onto itself. In ideal case the retextured
image should be identical to the original image. Fig. 5(a)
shows a sample of a real put-on image and the landmarked
garment itself. Some samples of both datasets are shown
in Fig. 4.

We used two metrics for evaluation of our method:
qualitative comparison using the mean opinion score
(MOS), and quantitative comparison using the mean
square error (MSE). The MOS score was measured by
showing 91 sets of images from the first dataset to 41 peo-
ple. The data was presented in an online survey where the
image size was two times larger to that of shown in 6,

with the exception of column (c) which was not shown
to the participants. Also it has to be pointed out, that
most of the participants did not have educational back-
ground in image processing or related fields. In the sur-
vey each person was asked for an opinion about which
one of the images in each set looks visually more realistic.
The MSE was measured on the second dataset by retextur-
ing the flat version of the shirt and computing the average
distance from retextured landmarks to ground truth land-
marks. Fig. 5(b) shows the process of computing MSE.
Unfortunately, some retexturing or garment fitting papers
just report results as a few qualitative images [47, 17, 43].
Regarding our contribution as a garment point matching,
we select point set registration methods in the compar-
ison using introduced evaluation metrics: nonrigid iter-
ative closest point (NRICP) [1] and coherent point drift
(CPD) [27].

All compared results were produced with the same
set of parameters that were determined empirically. The
setup parameters for matching the contours needed for the
point registration algorithm [21] are set as follows (see
original paper for the definition of parameters): sigma,
which is the scale parameter of Gaussian mixtures, is set
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to 0.2 and 0.1, and the maximum number of function eval-
uations at each level is set to 50, 500, 100, 100 and 100.
The point registration algorithm uses contours with 400
points. After the transformation and point correspondence
are found, the contour is further down-sampled to 120
points and used for the inner point matching. A larger
number would have resulted in a long computation time,
whereas a smaller number of points resulted in some un-
dersampled parts and produced inferior mappings. 120
points were chosen as a compromise between the execu-
tion time and the resulting mapping quality.

4.2 Evaluation
We separated long and short sleeve images in the results
to analyse them separately. We show the MOS percentage
in Table 1. The results illustrate that our method outper-
forms state-of-the-art methods by a large margin regard-
ing realistic view. This can also be seen qualitatively in
Fig. 6. We added correspondences between flat garment
and body contours in the third column of Fig. 6 to see
the effect of outer contour matching on the retexturing re-
sults. It can be seen that the final retextured image still
has a realistic appearance even with small misalignment
in outer correspondences. However, a small misalignment
can have a local impact. This can mainly be seen in the
long sleeves. As an additional qualitative example, Fig. 7
shows the proposed retexturing approach used to success-
fully retexture pants. Given the appropriate input data,
the same can be done for other garment types. It has to be
noted that the appearance of shadows are highly depen-
dant on the material of the garment a person is wearing.
The adjustment of Kinect IR values uses the same param-
eters for all generated results, therefore the shadow effects
can appear different for different garment types. The use
of Kinect IR data for shadow generations is the same as
the one presented in [33, 2].

If the source and target garments have different fea-
tures, for example if a collar is present in the put-on image
and not present in the flat image, some unnatural effects
may be seen; the same goes for different neck lines as
shown in Fig 8. The NRICP algorithm has the worst vi-
sual results due to the different topologies of the surfaces
between flat garment and body, and the CPD algorithm
has difficulties with aligning surfaces in the boundary re-
gions.

Table 2: MSE for marker mapping error on the second
dataset

Method T-shirts Long sleeves
NRICP [1] 115.400 px 215.349 px
CPD [27] 83.850 px 190.618 px
GM-TPS 75.005 px 105.884 px

MSE values are shown in Table 2. As seen from the
visual results, in most cases our method is more accu-
rate than state-of-the-art methods regarding marker dis-
tances to ground truth. Our method generates a lower
error for short sleeves than long sleeves. However, this
is not a significant change according to the MSE results.
Often our method performs better than other methods for
almost each marker in Fig. 9 where samples represent dif-
ferent garments, and landmarks are the white circles that
are placed on the garment, as is shown in Fig. 5. Our
method is more stable among different persons and dif-
ferent markers in comparison to the state-of-the-art meth-
ods. However, the long sleeves error as seen in Fig. 9(b)
fluctuates among different persons due to higher variation
in hand position. Marker numbers 8 and 16, which were
placed at the end of the sleeves, have the highest error in
both long and short sleeve garments. This happens due to
slight point misalignment in outer contour matching.

4.3 Time complexity

We analyze time complexity of the retexturing part, the
main contribution of this work. Computing geodesic dis-
tance is the most time consuming part of retexturing.
The basic fast marching algorithm has a time complex-
ity O(N log(N)) for Eikonal solver where N is the num-
ber of nodes in the mesh. Yatziv et al. [41] reduced
the complexity to O(N) via untidy priority queue. Al-
though basic formulation does not allow parallel comput-
ing, near optimal iterative Eikonal solvers have been ap-
peared for fast and parallel computing [20]. Fu et al. [13]
reported a computation time 459ms for a Stanford dragon
with 631,187 vertices speeding up basic fast marching al-
gorithm by a factor of 14. Note that a garment in our
setup has 15K vertices in average. Without loss of gener-
ality one can resize depth image by a factor of 0.5 and re-
duce number of vertices less than 4K, meaning a geodesic
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(a) (b) (c) (d) (e) (f)

Figure 6: Images created by the proposed retexturing method, (a) is the original image, (b) is the image of a shirt, (c)
shows the shape correspondence, (d) is the retextured image based on the geodesic mapping, (e) is mapping using the
Coherent Point Drift (CPD) algorithm and (f) is mapping using the non-rigid Iterative Closest Point (ICP) algorithm.
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(a) (b) (c)
(d)

Figure 7: Images created by the proposed retexturing method, (a) is the original image, (b) is the retextured image
based on the geodesic mapping, (c) is the image of pants and (d) shows the shape correspondence.
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Figure 8: Retexturing effects for different necklines

computation in less than 3ms for a single node. However,
we need to compute geodesic distance for all N vertices
which makes it polynomial time complexity. Fortunately
having a table of shortest distances among all N vertices
which is getting updated iteratively allows us to reduce
polynomial time complexity to N log(N), assuring real
time computation performance.

5 Conclusion
We proposed a retexturing method based on robust point
registration and thin plate spline interpolation. The pro-
posed method can be used to segment out the garment
worn by a person and retexture it with another similar
piece of garment, i.e. a garment lying on the table or some
other flat surface. In this fashion, the outer boundaries of
the segmented put-on garment are matched to the bound-
aries of the flat source garment. Afterwards, the whole
surfaces are matched based on geodesic thin plate spline
to assign each point on the target garment a color from the
source garment. We compared our approach to the state-
of-the-art methods and achieved the best results in both
visual and numerical evaluations.

Our current approach is limited to a relaxed pose with-
out occlusions on the garment. However, our approach
is general as long as boundary correspondences are given.
In future work, we will consider a 3D human model fitting
to cope with current limitations.
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