toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Victor M. Campello; Carlos Martin-Isla; Cristian Izquierdo; Andrea Guala; Jose F. Rodriguez Palomares; David Vilades; Martin L. Descalzo; Mahir Karakas; Ersin Cavus; Zahra Zahra Raisi-Estabragh; Steffen E. Petersen; Sergio Escalera; Santiago Segui; Karim Lekadir edit  doi
openurl 
  Title (up) Minimising multi-centre radiomics variability through image normalisation: a pilot study Type Journal Article
  Year 2022 Publication Scientific Reports Abbreviated Journal ScR  
  Volume 12 Issue 1 Pages 12532  
  Keywords  
  Abstract Radiomics is an emerging technique for the quantification of imaging data that has recently shown great promise for deeper phenotyping of cardiovascular disease. Thus far, the technique has been mostly applied in single-centre studies. However, one of the main difficulties in multi-centre imaging studies is the inherent variability of image characteristics due to centre differences. In this paper, a comprehensive analysis of radiomics variability under several image- and feature-based normalisation techniques was conducted using a multi-centre cardiovascular magnetic resonance dataset. 218 subjects divided into healthy (n = 112) and hypertrophic cardiomyopathy (n = 106, HCM) groups from five different centres were considered. First and second order texture radiomic features were extracted from three regions of interest, namely the left and right ventricular cavities and the left ventricular myocardium. Two methods were used to assess features’ variability. First, feature distributions were compared across centres to obtain a distribution similarity index. Second, two classification tasks were proposed to assess: (1) the amount of centre-related information encoded in normalised features (centre identification) and (2) the generalisation ability for a classification model when trained on these features (healthy versus HCM classification). The results showed that the feature-based harmonisation technique ComBat is able to remove the variability introduced by centre information from radiomic features, at the expense of slightly degrading classification performance. Piecewise linear histogram matching normalisation gave features with greater generalisation ability for classification ( balanced accuracy in between 0.78 ± 0.08 and 0.79 ± 0.09). Models trained with features from images without normalisation showed the worst performance overall ( balanced accuracy in between 0.45 ± 0.28 and 0.60 ± 0.22). In conclusion, centre-related information removal did not imply good generalisation ability for classification.  
  Address 2022/07/22  
  Corporate Author Thesis  
  Publisher Springer Nature Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ CMI2022 Serial 3749  
Permanent link to this record
 

 
Author Hugo Jair Escalante; Heysem Kaya; Albert Ali Salah; Sergio Escalera; Yagmur Gucluturk; Umut Guçlu; Xavier Baro; Isabelle Guyon; Julio C. S. Jacques Junior; Meysam Madadi; Stephane Ayache; Evelyne Viegas; Furkan Gurpinar; Achmadnoer Sukma Wicaksana; Cynthia Liem; Marcel A. J. Van Gerven; Rob Van Lier edit   pdf
url  doi
openurl 
  Title (up) Modeling, Recognizing, and Explaining Apparent Personality from Videos Type Journal Article
  Year 2022 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 13 Issue 2 Pages 894-911  
  Keywords  
  Abstract Explainability and interpretability are two critical aspects of decision support systems. Despite their importance, it is only recently that researchers are starting to explore these aspects. This paper provides an introduction to explainability and interpretability in the context of apparent personality recognition. To the best of our knowledge, this is the first effort in this direction. We describe a challenge we organized on explainability in first impressions analysis from video. We analyze in detail the newly introduced data set, evaluation protocol, proposed solutions and summarize the results of the challenge. We investigate the issue of bias in detail. Finally, derived from our study, we outline research opportunities that we foresee will be relevant in this area in the near future.  
  Address 1 April-June 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona;MV;OR;MILAB Approved no  
  Call Number Admin @ si @ EKS2022 Serial 3406  
Permanent link to this record
 

 
Author Victor M. Campello; Polyxeni Gkontra; Cristian Izquierdo; Carlos Martin-Isla; Alireza Sojoudi; Peter M. Full; Klaus Maier-Hein; Yao Zhang; Zhiqiang He; Jun Ma; Mario Parreno; Alberto Albiol; Fanwei Kong; Shawn C. Shadden; Jorge Corral Acero; Vaanathi Sundaresan; Mina Saber; Mustafa Elattar; Hongwei Li; Bjoern Menze; Firas Khader; Christoph Haarburger; Cian M. Scannell; Mitko Veta; Adam Carscadden; Kumaradevan Punithakumar; Xiao Liu; Sotirios A. Tsaftaris; Xiaoqiong Huang; Xin Yang; Lei Li; Xiahai Zhuang; David Vilades; Martin L. Descalzo; Andrea Guala; Lucia La Mura; Matthias G. Friedrich; Ria Garg; Julie Lebel; Filipe Henriques; Mahir Karakas; Ersin Cavus; Steffen E. Petersen; Sergio Escalera; Santiago Segui; Jose F. Rodriguez Palomares; Karim Lekadir edit  url
doi  openurl
  Title (up) Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation: The M&Ms Challenge Type Journal Article
  Year 2021 Publication IEEE Transactions on Medical Imaging Abbreviated Journal TMI  
  Volume 40 Issue 12 Pages 3543-3554  
  Keywords  
  Abstract The emergence of deep learning has considerably advanced the state-of-the-art in cardiac magnetic resonance (CMR) segmentation. Many techniques have been proposed over the last few years, bringing the accuracy of automated segmentation close to human performance. However, these models have been all too often trained and validated using cardiac imaging samples from single clinical centres or homogeneous imaging protocols. This has prevented the development and validation of models that are generalizable across different clinical centres, imaging conditions or scanner vendors. To promote further research and scientific benchmarking in the field of generalizable deep learning for cardiac segmentation, this paper presents the results of the Multi-Centre, Multi-Vendor and Multi-Disease Cardiac Segmentation (M&Ms) Challenge, which was recently organized as part of the MICCAI 2020 Conference. A total of 14 teams submitted different solutions to the problem, combining various baseline models, data augmentation strategies, and domain adaptation techniques. The obtained results indicate the importance of intensity-driven data augmentation, as well as the need for further research to improve generalizability towards unseen scanner vendors or new imaging protocols. Furthermore, we present a new resource of 375 heterogeneous CMR datasets acquired by using four different scanner vendors in six hospitals and three different countries (Spain, Canada and Germany), which we provide as open-access for the community to enable future research in the field.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ CGI2021 Serial 3653  
Permanent link to this record
 

 
Author Juan Jose Rubio; Takahiro Kashiwa; Teera Laiteerapong; Wenlong Deng; Kohei Nagai; Sergio Escalera; Kotaro Nakayama; Yutaka Matsuo; Helmut Prendinger edit  url
doi  openurl
  Title (up) Multi-class structural damage segmentation using fully convolutional networks Type Journal Article
  Year 2019 Publication Computers in Industry Abbreviated Journal COMPUTIND  
  Volume 112 Issue Pages 103121  
  Keywords Bridge damage detection; Deep learning; Semantic segmentation  
  Abstract Structural Health Monitoring (SHM) has benefited from computer vision and more recently, Deep Learning approaches, to accurately estimate the state of deterioration of infrastructure. In our work, we test Fully Convolutional Networks (FCNs) with a dataset of deck areas of bridges for damage segmentation. We create a dataset for delamination and rebar exposure that has been collected from inspection records of bridges in Niigata Prefecture, Japan. The dataset consists of 734 images with three labels per image, which makes it the largest dataset of images of bridge deck damage. This data allows us to estimate the performance of our method based on regions of agreement, which emulates the uncertainty of in-field inspections. We demonstrate the practicality of FCNs to perform automated semantic segmentation of surface damages. Our model achieves a mean accuracy of 89.7% for delamination and 78.4% for rebar exposure, and a weighted F1 score of 81.9%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj;MILAB;ADAS Approved no  
  Call Number Admin @ si @ RKL2019 Serial 3315  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  doi
openurl 
  Title (up) Multi-Modal Deep Hand Sign Language Recognition in Still Images Using Restricted Boltzmann Machine Type Journal Article
  Year 2018 Publication Entropy Abbreviated Journal ENTROPY  
  Volume 20 Issue 11 Pages 809  
  Keywords hand sign language; deep learning; restricted Boltzmann machine (RBM); multi-modal; profoundly deaf; noisy image  
  Abstract In this paper, a deep learning approach, Restricted Boltzmann Machine (RBM), is used to perform automatic hand sign language recognition from visual data. We evaluate how RBM, as a deep generative model, is capable of generating the distribution of the input data for an enhanced recognition of unseen data. Two modalities, RGB and Depth, are considered in the model input in three forms: original image, cropped image, and noisy cropped image. Five crops of the input image are used and the hand of these cropped images are detected using Convolutional Neural Network (CNN). After that, three types of the detected hand images are generated for each modality and input to RBMs. The outputs of the RBMs for two modalities are fused in another RBM in order to recognize the output sign label of the input image. The proposed multi-modal model is trained on all and part of the American alphabet and digits of four publicly available datasets. We also evaluate the robustness of the proposal against noise. Experimental results show that the proposed multi-modal model, using crops and the RBM fusing methodology, achieves state-of-the-art results on Massey University Gesture Dataset 2012, American Sign Language (ASL). and Fingerspelling Dataset from the University of Surrey’s Center for Vision, Speech and Signal Processing, NYU, and ASL Fingerspelling A datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ RKE2018 Serial 3198  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: