toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Egils Avots; Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Baro; Paul Pallin; Gholamreza Anbarjafari edit   pdf
url  doi
openurl 
  Title (up) From 2D to 3D geodesic-based garment matching Type Journal Article
  Year 2019 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 78 Issue 18 Pages 25829–25853  
  Keywords Shape matching; Geodesic distance; Texture mapping; RGBD image processing; Gaussian mixture model  
  Abstract A new approach for 2D to 3D garment retexturing is proposed based on Gaussian mixture models and thin plate splines (TPS). An automatically segmented garment of an individual is matched to a new source garment and rendered, resulting in augmented images in which the target garment has been retextured using the texture of the source garment. We divide the problem into garment boundary matching based on Gaussian mixture models and then interpolate inner points using surface topology extracted through geodesic paths, which leads to a more realistic result than standard approaches. We evaluated and compared our system quantitatively by root mean square error (RMS) and qualitatively using the mean opinion score (MOS), showing the benefits of the proposed methodology on our gathered dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE; 600.098; 600.119; 602.133;MV;OR;MILAB Approved no  
  Call Number Admin @ si @ AME2019 Serial 3317  
Permanent link to this record
 

 
Author Oriol Pujol; Debora Gil; Petia Radeva edit   pdf
doi  openurl
  Title (up) Fundamentals of Stop and Go active models Type Journal Article
  Year 2005 Publication Image and Vision Computing Abbreviated Journal  
  Volume 23 Issue 8 Pages 681-691  
  Keywords Deformable models; Geodesic snakes; Region-based segmentation  
  Abstract An efficient snake formulation should conform to the idea of picking the smoothest curve among all the shapes approximating an object of interest. In current geodesic snakes, the regularizing curvature also affects the convergence stage, hindering the latter at concave regions. In the present work, we make use of characteristic functions to define a novel geodesic formulation that decouples regularity and convergence. This term decoupling endows the snake with higher adaptability to non-convex shapes. Convergence is ensured by splitting the definition of the external force into an attractive vector field and a repulsive one. In our paper, we propose to use likelihood maps as approximation of characteristic functions of object appearance. The better efficiency and accuracy of our decoupled scheme are illustrated in the particular case of feature space-based segmentation.  
  Address  
  Corporate Author Thesis  
  Publisher Butterworth-Heinemann Place of Publication Newton, MA, USA Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0262-8856 ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB;HuPBA Approved no  
  Call Number IAM @ iam @ PGR2005 Serial 1629  
Permanent link to this record
 

 
Author Francesco Ciompi; Oriol Pujol; Carlo Gatta; Oriol Rodriguez-Leor; J. Mauri; Petia Radeva edit  url
doi  openurl
  Title (up) Fusing in-vitro and in-vivo intravascular ultrasound data for plaque characterization Type Journal Article
  Year 2010 Publication International Journal of Cardiovascular Imaging Abbreviated Journal IJCI  
  Volume 26 Issue 7 Pages 763–779  
  Keywords  
  Abstract Accurate detection of in-vivo vulnerable plaque in coronary arteries is still an open problem. Recent studies show that it is highly related to tissue structure and composition. Intravascular Ultrasound (IVUS) is a powerful imaging technique that gives a detailed cross-sectional image of the vessel, allowing to explore arteries morphology. IVUS data validation is usually performed by comparing post-mortem (in-vitro) IVUS data and corresponding histological analysis of the tissue. The main drawback of this method is the few number of available case studies and validated data due to the complex procedure of histological analysis of the tissue. On the other hand, IVUS data from in-vivo cases is easy to obtain but it can not be histologically validated. In this work, we propose to enhance the in-vitro training data set by selectively including examples from in-vivo plaques. For this purpose, a Sequential Floating Forward Selection method is reformulated in the context of plaque characterization. The enhanced classifier performance is validated on in-vitro data set, yielding an overall accuracy of 91.59% in discriminating among fibrotic, lipidic and calcified plaques, while reducing the gap between in-vivo and in-vitro data analysis. Experimental results suggest that the obtained classifier could be properly applied on in-vivo plaque characterization and also demonstrate that the common hypothesis of assuming the difference between in-vivo and in-vitro as negligible is incorrect.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1569-5794 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HUPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ CPG2010 Serial 1305  
Permanent link to this record
 

 
Author Swathikiran Sudhakaran; Sergio Escalera; Oswald Lanz edit   pdf
doi  openurl
  Title (up) Gate-Shift-Fuse for Video Action Recognition Type Journal Article
  Year 2023 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 45 Issue 9 Pages 10913-10928  
  Keywords Action Recognition; Video Classification; Spatial Gating; Channel Fusion  
  Abstract Convolutional Neural Networks are the de facto models for image recognition. However 3D CNNs, the straight forward extension of 2D CNNs for video recognition, have not achieved the same success on standard action recognition benchmarks. One of the main reasons for this reduced performance of 3D CNNs is the increased computational complexity requiring large scale annotated datasets to train them in scale. 3D kernel factorization approaches have been proposed to reduce the complexity of 3D CNNs. Existing kernel factorization approaches follow hand-designed and hard-wired techniques. In this paper we propose Gate-Shift-Fuse (GSF), a novel spatio-temporal feature extraction module which controls interactions in spatio-temporal decomposition and learns to adaptively route features through time and combine them in a data dependent manner. GSF leverages grouped spatial gating to decompose input tensor and channel weighting to fuse the decomposed tensors. GSF can be inserted into existing 2D CNNs to convert them into an efficient and high performing spatio-temporal feature extractor, with negligible parameter and compute overhead. We perform an extensive analysis of GSF using two popular 2D CNN families and achieve state-of-the-art or competitive performance on five standard action recognition benchmarks.  
  Address 1 Sept. 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no menciona;MILAB Approved no  
  Call Number Admin @ si @ SEL2023 Serial 3814  
Permanent link to this record
 

 
Author Eloi Puertas; Sergio Escalera; Oriol Pujol edit   pdf
url  doi
openurl 
  Title (up) Generalized Multi-scale Stacked Sequential Learning for Multi-class Classification Type Journal Article
  Year 2015 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 18 Issue 2 Pages 247-261  
  Keywords Stacked sequential learning; Multi-scale; Error-correct output codes (ECOC); Contextual classification  
  Abstract In many classification problems, neighbor data labels have inherent sequential relationships. Sequential learning algorithms take benefit of these relationships in order to improve generalization. In this paper, we revise the multi-scale sequential learning approach (MSSL) for applying it in the multi-class case (MMSSL). We introduce the error-correcting output codesframework in the MSSL classifiers and propose a formulation for calculating confidence maps from the margins of the base classifiers. In addition, we propose a MMSSL compression approach which reduces the number of features in the extended data set without a loss in performance. The proposed methods are tested on several databases, showing significant performance improvement compared to classical approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7541 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ PEP2013 Serial 2251  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: