toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Reza Azad; Maryam Asadi-Aghbolaghi; Shohreh Kasaei; Sergio Escalera edit  doi
openurl 
  Title (up) Dynamic 3D Hand Gesture Recognition by Learning Weighted Depth Motion Maps Type Journal Article
  Year 2019 Publication IEEE Transactions on Circuits and Systems for Video Technology Abbreviated Journal TCSVT  
  Volume 29 Issue 6 Pages 1729-1740  
  Keywords Hand gesture recognition; Multilevel temporal sampling; Weighted depth motion map; Spatio-temporal description; VLAD encoding  
  Abstract Hand gesture recognition from sequences of depth maps is a challenging computer vision task because of the low inter-class and high intra-class variability, different execution rates of each gesture, and the high articulated nature of human hand. In this paper, a multilevel temporal sampling (MTS) method is first proposed that is based on the motion energy of key-frames of depth sequences. As a result, long, middle, and short sequences are generated that contain the relevant gesture information. The MTS results in increasing the intra-class similarity while raising the inter-class dissimilarities. The weighted depth motion map (WDMM) is then proposed to extract the spatio-temporal information from generated summarized sequences by an accumulated weighted absolute difference of consecutive frames. The histogram of gradient (HOG) and local binary pattern (LBP) are exploited to extract features from WDMM. The obtained results define the current state-of-the-art on three public benchmark datasets of: MSR Gesture 3D, SKIG, and MSR Action 3D, for 3D hand gesture recognition. We also achieve competitive results on NTU action dataset.  
  Address June 2019,  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ AAK2018 Serial 3213  
Permanent link to this record
 

 
Author Francesco Ciompi; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title (up) ECOC-DRF: Discriminative random fields based on error correcting output codes Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 6 Pages 2193-2204  
  Keywords Discriminative random fields; Error-correcting output codes; Multi-class classification; Graphical models  
  Abstract We present ECOC-DRF, a framework where potential functions for Discriminative Random Fields are formulated as an ensemble of classifiers. We introduce the label trick, a technique to express transitions in the pairwise potential as meta-classes. This allows to independently learn any possible transition between labels without assuming any pre-defined model. The Error Correcting Output Codes matrix is used as ensemble framework for the combination of margin classifiers. We apply ECOC-DRF to a large set of classification problems, covering synthetic, natural and medical images for binary and multi-class cases, outperforming state-of-the art in almost all the experiments.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes LAMP; HuPBA; MILAB; 605.203; 600.046; 601.043; 600.079 Approved no  
  Call Number Admin @ si @ CPR2014b Serial 2470  
Permanent link to this record
 

 
Author Jose Garcia-Rodriguez; Isabelle Guyon; Sergio Escalera; Alexandra Psarrou; Andrew Lewis; Miguel Cazorla edit  doi
openurl 
  Title (up) Editorial: Special Issue on Computational Intelligence for Vision and Robotics Type Journal Article
  Year 2017 Publication Neural Computing and Applications Abbreviated Journal Neural Computing and Applications  
  Volume 28 Issue 5 Pages 853–854  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB; no menciona Approved no  
  Call Number Admin @ si @ GGE2017 Serial 2845  
Permanent link to this record
 

 
Author Meysam Madadi; Sergio Escalera; Xavier Baro; Jordi Gonzalez edit   pdf
doi  openurl
  Title (up) End-to-end Global to Local CNN Learning for Hand Pose Recovery in Depth data Type Journal Article
  Year 2022 Publication IET Computer Vision Abbreviated Journal IETCV  
  Volume 16 Issue 1 Pages 50-66  
  Keywords Computer vision; data acquisition; human computer interaction; learning (artificial intelligence); pose estimation  
  Abstract Despite recent advances in 3D pose estimation of human hands, especially thanks to the advent of CNNs and depth cameras, this task is still far from being solved. This is mainly due to the highly non-linear dynamics of fingers, which make hand model training a challenging task. In this paper, we exploit a novel hierarchical tree-like structured CNN, in which branches are trained to become specialized in predefined subsets of hand joints, called local poses. We further fuse local pose features, extracted from hierarchical CNN branches, to learn higher order dependencies among joints in the final pose by end-to-end training. Lastly, the loss function used is also defined to incorporate appearance and physical constraints about doable hand motion and deformation. Finally, we introduce a non-rigid data augmentation approach to increase the amount of training depth data. Experimental results suggest that feeding a tree-shaped CNN, specialized in local poses, into a fusion network for modeling joints correlations and dependencies, helps to increase the precision of final estimations, outperforming state-of-the-art results on NYU and SyntheticHand datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; ISE; 600.098; 600.119;MV;OR;MILAB Approved no  
  Call Number Admin @ si @ MEB2022 Serial 3652  
Permanent link to this record
 

 
Author Miguel Angel Bautista; Oriol Pujol; Fernando De la Torre; Sergio Escalera edit   pdf
url  doi
openurl 
  Title (up) Error-Correcting Factorization Type Journal Article
  Year 2018 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 40 Issue Pages 2388-2401  
  Keywords  
  Abstract Error Correcting Output Codes (ECOC) is a successful technique in multi-class classification, which is a core problem in Pattern Recognition and Machine Learning. A major advantage of ECOC over other methods is that the multi- class problem is decoupled into a set of binary problems that are solved independently. However, literature defines a general error-correcting capability for ECOCs without analyzing how it distributes among classes, hindering a deeper analysis of pair-wise error-correction. To address these limitations this paper proposes an Error-Correcting Factorization (ECF) method, our contribution is three fold: (I) We propose a novel representation of the error-correction capability, called the design matrix, that enables us to build an ECOC on the basis of allocating correction to pairs of classes. (II) We derive the optimal code length of an ECOC using rank properties of the design matrix. (III) ECF is formulated as a discrete optimization problem, and a relaxed solution is found using an efficient constrained block coordinate descent approach. (IV) Enabled by the flexibility introduced with the design matrix we propose to allocate the error-correction on classes that are prone to confusion. Experimental results in several databases show that when allocating the error-correction to confusable classes ECF outperforms state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona;MILAB Approved no  
  Call Number Admin @ si @ BPT2018 Serial 3015  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: