|
Records |
Links |
|
Author |
Carlo Gatta; Eloi Puertas; Oriol Pujol |

|
|
Title |
Multi-Scale Stacked Sequential Learning |
Type |
Journal Article |
|
Year |
2011 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
44 |
Issue |
10-11 |
Pages |
2414-2416 |
|
|
Keywords |
Stacked sequential learning; Multiscale; Multiresolution; Contextual classification |
|
|
Abstract |
One of the most widely used assumptions in supervised learning is that data is independent and identically distributed. This assumption does not hold true in many real cases. Sequential learning is the discipline of machine learning that deals with dependent data such that neighboring examples exhibit some kind of relationship. In the literature, there are different approaches that try to capture and exploit this correlation, by means of different methodologies. In this paper we focus on meta-learning strategies and, in particular, the stacked sequential learning approach. The main contribution of this work is two-fold: first, we generalize the stacked sequential learning. This generalization reflects the key role of neighboring interactions modeling. Second, we propose an effective and efficient way of capturing and exploiting sequential correlations that takes into account long-range interactions by means of a multi-scale pyramidal decomposition of the predicted labels. Additionally, this new method subsumes the standard stacked sequential learning approach. We tested the proposed method on two different classification tasks: text lines classification in a FAQ data set and image classification. Results on these tasks clearly show that our approach outperforms the standard stacked sequential learning. Moreover, we show that the proposed method allows to control the trade-off between the detail and the desired range of the interactions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
MILAB;HuPBA |
Approved |
no |
|
|
Call Number |
Admin @ si @ GPP2011 |
Serial |
1802 |
|
Permanent link to this record |
|
|
|
|
Author |
Miguel Reyes; Albert Clapes; Jose Ramirez; Juan R Revilla; Sergio Escalera |


|
|
Title |
Automatic Digital Biometry Analysis based on Depth Maps |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Computers in Industry |
Abbreviated Journal |
COMPUTIND |
|
|
Volume |
64 |
Issue |
9 |
Pages |
1316-1325 |
|
|
Keywords |
Multi-modal data fusion; Depth maps; Posture analysis; Anthropometric data; Musculo-skeletal disorders; Gesture analysis |
|
|
Abstract |
World Health Organization estimates that 80% of the world population is affected by back-related disorders during his life. Current practices to analyze musculo-skeletal disorders (MSDs) are expensive, subjective, and invasive. In this work, we propose a tool for static body posture analysis and dynamic range of movement estimation of the skeleton joints based on 3D anthropometric information from multi-modal data. Given a set of keypoints, RGB and depth data are aligned, depth surface is reconstructed, keypoints are matched, and accurate measurements about posture and spinal curvature are computed. Given a set of joints, range of movement measurements is also obtained. Moreover, gesture recognition based on joint movements is performed to look for the correctness in the development of physical exercises. The system shows high precision and reliable measurements, being useful for posture reeducation purposes to prevent MSDs, as well as tracking the posture evolution of patients in rehabilitation treatments. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ RCR2013 |
Serial |
2252 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Clapes; Miguel Reyes; Sergio Escalera |


|
|
Title |
Multi-modal User Identification and Object Recognition Surveillance System |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
34 |
Issue |
7 |
Pages |
799-808 |
|
|
Keywords |
Multi-modal RGB-Depth data analysis; User identification; Object recognition; Intelligent surveillance; Visual features; Statistical learning |
|
|
Abstract |
We propose an automatic surveillance system for user identification and object recognition based on multi-modal RGB-Depth data analysis. We model a RGBD environment learning a pixel-based background Gaussian distribution. Then, user and object candidate regions are detected and recognized using robust statistical approaches. The system robustly recognizes users and updates the system in an online way, identifying and detecting new actors in the scene. Moreover, segmented objects are described, matched, recognized, and updated online using view-point 3D descriptions, being robust to partial occlusions and local 3D viewpoint rotations. Finally, the system saves the historic of user–object assignments, being specially useful for surveillance scenarios. The system has been evaluated on a novel data set containing different indoor/outdoor scenarios, objects, and users, showing accurate recognition and better performance than standard state-of-the-art approaches. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; 600.046; 605.203;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ CRE2013 |
Serial |
2248 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera |


|
|
Title |
A Genetic-based Subspace Analysis Method for Improving Error-Correcting Output Coding |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
10 |
Pages |
2830-2839 |
|
|
Keywords |
Error Correcting Output Codes; Evolutionary computation; Multiclass classification; Feature subspace; Ensemble classification |
|
|
Abstract |
Two key factors affecting the performance of Error Correcting Output Codes (ECOC) in multiclass classification problems are the independence of binary classifiers and the problem-dependent coding design. In this paper, we propose an evolutionary algorithm-based approach to the design of an application-dependent codematrix in the ECOC framework. The central idea of this work is to design a three-dimensional codematrix, where the third dimension is the feature space of the problem domain. In order to do that, we consider the feature space in the design process of the codematrix with the aim of improving the independence and accuracy of binary classifiers. The proposed method takes advantage of some basic concepts of ensemble classification, such as diversity of classifiers, and also benefits from the evolutionary approach for optimizing the three-dimensional codematrix, taking into account the problem domain. We provide a set of experimental results using a set of benchmark datasets from the UCI Machine Learning Repository, as well as two real multiclass Computer Vision problems. Both sets of experiments are conducted using two different base learners: Neural Networks and Decision Trees. The results show that the proposed method increases the classification accuracy in comparison with the state-of-the-art ECOC coding techniques. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGE2013a |
Serial |
2247 |
|
Permanent link to this record |
|
|
|
|
Author |
Egils Avots; M. Daneshmanda; Andres Traumann; Sergio Escalera; G. Anbarjafaria |


|
|
Title |
Automatic garment retexturing based on infrared information |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Computers & Graphics |
Abbreviated Journal |
CG |
|
|
Volume |
59 |
Issue |
|
Pages |
28-38 |
|
|
Keywords |
Garment Retexturing; Texture Mapping; Infrared Images; RGB-D Acquisition Devices; Shading |
|
|
Abstract |
This paper introduces a new automatic technique for garment retexturing using a single static image along with the depth and infrared information obtained using the Microsoft Kinect II as the RGB-D acquisition device. First, the garment is segmented out from the image using either the Breadth-First Search algorithm or the semi-automatic procedure provided by the GrabCut method. Then texture domain coordinates are computed for each pixel belonging to the garment using normalised 3D information. Afterwards, shading is applied to the new colours from the texture image. As the main contribution of the proposed method, the latter information is obtained based on extracting a linear map transforming the colour present on the infrared image to that of the RGB colour channels. One of the most important impacts of this strategy is that the resulting retexturing algorithm is colour-, pattern- and lighting-invariant. The experimental results show that it can be used to produce realistic representations, which is substantiated through implementing it under various experimentation scenarios, involving varying lighting intensities and directions. Successful results are accomplished also on video sequences, as well as on images of subjects taking different poses. Based on the Mean Opinion Score analysis conducted on many randomly chosen users, it has been shown to produce more realistic-looking results compared to the existing state-of-the-art methods suggested in the literature. From a wide perspective, the proposed method can be used for retexturing all sorts of segmented surfaces, although the focus of this study is on garment retexturing, and the investigation of the configurations is steered accordingly, since the experiments target an application in the context of virtual fitting rooms. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher  |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @ ADT2016 |
Serial |
2759 |
|
Permanent link to this record |