toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Frederic Sampedro; Sergio Escalera; Anna Domenech; Ignasi Carrio edit  doi
openurl 
  Title A computational framework for cancer response assessment based on oncological PET-CT scans Type Journal Article
  Year 2014 Publication (up) Computers in Biology and Medicine Abbreviated Journal CBM  
  Volume 55 Issue Pages 92–99  
  Keywords Computer aided diagnosis; Nuclear medicine; Machine learning; Image processing; Quantitative analysis  
  Abstract In this work we present a comprehensive computational framework to help in the clinical assessment of cancer response from a pair of time consecutive oncological PET-CT scans. In this scenario, the design and implementation of a supervised machine learning system to predict and quantify cancer progression or response conditions by introducing a novel feature set that models the underlying clinical context is described. Performance results in 100 clinical cases (corresponding to 200 whole body PET-CT scans) in comparing expert-based visual analysis and classifier decision making show up to 70% accuracy within a completely automatic pipeline and 90% accuracy when providing the system with expert-guided PET tumor segmentation masks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SED2014 Serial 2606  
Permanent link to this record
 

 
Author David Rotger; Misael Rosales; Jaume Garcia; Oriol Pujol ; J. Mauri; Petia Radeva edit   pdf
doi  openurl
  Title Active Vessel: A New Multimedia Workstation for Intravascular Ultrasound and Angiography Fusion Type Journal Article
  Year 2003 Publication (up) Computers in Cardiology Abbreviated Journal  
  Volume 30 Issue Pages 65-68  
  Keywords  
  Abstract AcriveVessel is a new multimedia workstation which enables the visualization, acquisition and handling of both image modalities, on- and ofline. It enables DICOM v3.0 decompression and browsing, video acquisition,repmduction and storage for IntraVascular UltraSound (IVUS) and angiograms with their corresponding ECG,automatic catheter segmentation in angiography images (using fast marching algorithm). BSpline models definition for vessel layers on IVUS images sequence and an extensively validated tool to fuse information. This approach defines the correspondence of every IVUS image with its correspondent point in the angiogram and viceversa. The 3 0 reconstruction of the NUS catheterhessel enables real distance measurements as well as threedimensional visualization showing vessel tortuosity in the space.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM;MILAB;HuPBA Approved no  
  Call Number IAM @ iam @ RRG2003 Serial 1647  
Permanent link to this record
 

 
Author Miguel Reyes; Albert Clapes; Jose Ramirez; Juan R Revilla; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Automatic Digital Biometry Analysis based on Depth Maps Type Journal Article
  Year 2013 Publication (up) Computers in Industry Abbreviated Journal COMPUTIND  
  Volume 64 Issue 9 Pages 1316-1325  
  Keywords Multi-modal data fusion; Depth maps; Posture analysis; Anthropometric data; Musculo-skeletal disorders; Gesture analysis  
  Abstract World Health Organization estimates that 80% of the world population is affected by back-related disorders during his life. Current practices to analyze musculo-skeletal disorders (MSDs) are expensive, subjective, and invasive. In this work, we propose a tool for static body posture analysis and dynamic range of movement estimation of the skeleton joints based on 3D anthropometric information from multi-modal data. Given a set of keypoints, RGB and depth data are aligned, depth surface is reconstructed, keypoints are matched, and accurate measurements about posture and spinal curvature are computed. Given a set of joints, range of movement measurements is also obtained. Moreover, gesture recognition based on joint movements is performed to look for the correctness in the development of physical exercises. The system shows high precision and reliable measurements, being useful for posture reeducation purposes to prevent MSDs, as well as tracking the posture evolution of patients in rehabilitation treatments.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ RCR2013 Serial 2252  
Permanent link to this record
 

 
Author Juan Jose Rubio; Takahiro Kashiwa; Teera Laiteerapong; Wenlong Deng; Kohei Nagai; Sergio Escalera; Kotaro Nakayama; Yutaka Matsuo; Helmut Prendinger edit  url
doi  openurl
  Title Multi-class structural damage segmentation using fully convolutional networks Type Journal Article
  Year 2019 Publication (up) Computers in Industry Abbreviated Journal COMPUTIND  
  Volume 112 Issue Pages 103121  
  Keywords Bridge damage detection; Deep learning; Semantic segmentation  
  Abstract Structural Health Monitoring (SHM) has benefited from computer vision and more recently, Deep Learning approaches, to accurately estimate the state of deterioration of infrastructure. In our work, we test Fully Convolutional Networks (FCNs) with a dataset of deck areas of bridges for damage segmentation. We create a dataset for delamination and rebar exposure that has been collected from inspection records of bridges in Niigata Prefecture, Japan. The dataset consists of 734 images with three labels per image, which makes it the largest dataset of images of bridge deck damage. This data allows us to estimate the performance of our method based on regions of agreement, which emulates the uncertainty of in-field inspections. We demonstrate the practicality of FCNs to perform automated semantic segmentation of surface damages. Our model achieves a mean accuracy of 89.7% for delamination and 78.4% for rebar exposure, and a weighted F1 score of 81.9%.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj;MILAB;ADAS Approved no  
  Call Number Admin @ si @ RKL2019 Serial 3315  
Permanent link to this record
 

 
Author Andres Traumann; Gholamreza Anbarjafari; Sergio Escalera edit  doi
openurl 
  Title Accurate 3D Measurement Using Optical Depth Information Type Journal Article
  Year 2015 Publication (up) Electronic Letters Abbreviated Journal EL  
  Volume 51 Issue 18 Pages 1420-1422  
  Keywords  
  Abstract A novel three-dimensional measurement technique is proposed. The methodology consists in mapping from the screen coordinates reported by the optical camera to the real world, and integrating distance gradients from the beginning to the end point, while also minimising the error through fitting pixel locations to a smooth curve. The results demonstrate accuracy of less than half a centimetre using Microsoft Kinect II.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ TAE2015 Serial 2647  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: