toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Gerard Canal; Sergio Escalera; Cecilio Angulo edit   pdf
doi  openurl
  Title A Real-time Human-Robot Interaction system based on gestures for assistive scenarios Type Journal Article
  Year 2016 Publication Computer Vision and Image Understanding Abbreviated Journal CVIU  
  Volume 149 Issue Pages 65-77  
  Keywords Gesture recognition; Human Robot Interaction; Dynamic Time Warping; Pointing location estimation  
  Abstract Natural and intuitive human interaction with robotic systems is a key point to develop robots assisting people in an easy and effective way. In this paper, a Human Robot Interaction (HRI) system able to recognize gestures usually employed in human non-verbal communication is introduced, and an in-depth study of its usability is performed. The system deals with dynamic gestures such as waving or nodding which are recognized using a Dynamic Time Warping approach based on gesture specific features computed from depth maps. A static gesture consisting in pointing at an object is also recognized. The pointed location is then estimated in order to detect candidate objects the user may refer to. When the pointed object is unclear for the robot, a disambiguation procedure by means of either a verbal or gestural dialogue is performed. This skill would lead to the robot picking an object in behalf of the user, which could present difficulties to do it by itself. The overall system — which is composed by a NAO and Wifibot robots, a KinectTM v2 sensor and two laptops — is firstly evaluated in a structured lab setup. Then, a broad set of user tests has been completed, which allows to assess correct performance in terms of recognition rates, easiness of use and response times.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier B.V. Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ CEA2016 Serial 2768  
Permanent link to this record
 

 
Author Marc Oliu; Ciprian Corneanu; Kamal Nasrollahi; Olegs Nikisins; Sergio Escalera; Yunlian Sun; Haiqing Li; Zhenan Sun; Thomas B. Moeslund; Modris Greitans edit  url
openurl 
  Title Improved RGB-D-T based Face Recognition Type Journal Article
  Year 2016 Publication IET Biometrics Abbreviated Journal BIO  
  Volume 5 Issue 4 Pages 297 - 303  
  Keywords  
  Abstract Reliable facial recognition systems are of crucial importance in various applications from entertainment to security. Thanks to the deep-learning concepts introduced in the field, a significant improvement in the performance of the unimodal facial recognition systems has been observed in the recent years. At the same time a multimodal facial recognition is a promising approach. This study combines the latest successes in both directions by applying deep learning convolutional neural networks (CNN) to the multimodal RGB, depth, and thermal (RGB-D-T) based facial recognition problem outperforming previously published results. Furthermore, a late fusion of the CNN-based recognition block with various hand-crafted features (local binary patterns, histograms of oriented gradients, Haar-like rectangular features, histograms of Gabor ordinal measures) is introduced, demonstrating even better recognition performance on a benchmark RGB-D-T database. The obtained results in this study show that the classical engineered features and CNN-based features can complement each other for recognition purposes.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HuPBA;MILAB; Approved no  
  Call Number Admin @ si @ OCN2016 Serial 2854  
Permanent link to this record
 

 
Author Cristina Palmero; Jordi Esquirol; Vanessa Bayo; Miquel Angel Cos; Pouya Ahmadmonfared; Joan Salabert; David Sanchez; Sergio Escalera edit   pdf
doi  openurl
  Title Automatic Sleep System Recommendation by Multi-modal RBG-Depth-Pressure Anthropometric Analysis Type Journal Article
  Year 2017 Publication International Journal of Computer Vision Abbreviated Journal IJCV  
  Volume 122 Issue 2 Pages 212–227  
  Keywords Sleep system recommendation; RGB-Depth data Pressure imaging; Anthropometric landmark extraction; Multi-part human body segmentation  
  Abstract This paper presents a novel system for automatic sleep system recommendation using RGB, depth and pressure information. It consists of a validated clinical knowledge-based model that, along with a set of prescription variables extracted automatically, obtains a personalized bed design recommendation. The automatic process starts by performing multi-part human body RGB-D segmentation combining GrabCut, 3D Shape Context descriptor and Thin Plate Splines, to then extract a set of anthropometric landmark points by applying orthogonal plates to the segmented human body. The extracted variables are introduced to the computerized clinical model to calculate body circumferences, weight, morphotype and Body Mass Index categorization. Furthermore, pressure image analysis is performed to extract pressure values and at-risk points, which are also introduced to the model to eventually obtain the final prescription of mattress, topper, and pillow. We validate the complete system in a set of 200 subjects, showing accurate category classification and high correlation results with respect to manual measures.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HuPBA;MILAB; 303.100 Approved no  
  Call Number Admin @ si @ PEB2017 Serial 2765  
Permanent link to this record
 

 
Author Frederic Sampedro; Anna Domenech; Sergio Escalera; Ignasi Carrio edit  doi
openurl 
  Title Computing quantitative indicators of structural renal damage in pediatric DMSA scans Type Journal Article
  Year 2017 Publication Revista Española de Medicina Nuclear e Imagen Molecular Abbreviated Journal REMNIM  
  Volume 36 Issue 2 Pages 72-77  
  Keywords  
  Abstract OBJECTIVES:
The proposal and implementation of a computational framework for the quantification of structural renal damage from 99mTc-dimercaptosuccinic acid (DMSA) scans. The aim of this work is to propose, implement, and validate a computational framework for the quantification of structural renal damage from DMSA scans and in an observer-independent manner.
MATERIALS AND METHODS:
From a set of 16 pediatric DMSA-positive scans and 16 matched controls and using both expert-guided and automatic approaches, a set of image-derived quantitative indicators was computed based on the relative size, intensity and histogram distribution of the lesion. A correlation analysis was conducted in order to investigate the association of these indicators with other clinical data of interest in this scenario, including C-reactive protein (CRP), white cell count, vesicoureteral reflux, fever, relative perfusion, and the presence of renal sequelae in a 6-month follow-up DMSA scan.
RESULTS:
A fully automatic lesion detection and segmentation system was able to successfully classify DMSA-positive from negative scans (AUC=0.92, sensitivity=81% and specificity=94%). The image-computed relative size of the lesion correlated with the presence of fever and CRP levels (p<0.05), and a measurement derived from the distribution histogram of the lesion obtained significant performance results in the detection of permanent renal damage (AUC=0.86, sensitivity=100% and specificity=75%).
CONCLUSIONS:
The proposal and implementation of a computational framework for the quantification of structural renal damage from DMSA scans showed a promising potential to complement visual diagnosis and non-imaging indicators.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HuPBA;MILAB; no menciona Approved no  
  Call Number Admin @ si @ SDE2017 Serial 2842  
Permanent link to this record
 

 
Author Jose Garcia-Rodriguez; Isabelle Guyon; Sergio Escalera; Alexandra Psarrou; Andrew Lewis; Miguel Cazorla edit  doi
openurl 
  Title Editorial: Special Issue on Computational Intelligence for Vision and Robotics Type Journal Article
  Year 2017 Publication Neural Computing and Applications Abbreviated Journal Neural Computing and Applications  
  Volume 28 Issue 5 Pages 853–854  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes (up) HuPBA;MILAB; no menciona Approved no  
  Call Number Admin @ si @ GGE2017 Serial 2845  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: