toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Xavier Carrillo; E Fernandez-Nofrerias; Francesco Ciompi; Oriol Rodriguez-Leor; Petia Radeva; Neus Salvatella; Oriol Pujol; J. Mauri; A. Bayes edit  openurl
  Title Changes in Radial Artery Volume Assessed Using Intravascular Ultrasound: A Comparison of Two Vasodilator Regimens in Transradial Coronary Intervention Type Journal Article
  Year 2011 Publication Journal of Invasive Cardiology Abbreviated Journal JOIC  
  Volume 23 Issue 10 Pages 401-404  
  Keywords (down) radial; vasodilator treatment; percutaneous coronary intervention; IVUS; volumetric IVUS analysis  
  Abstract OBJECTIVES:
This study used intravascular ultrasound (IVUS) to evaluate radial artery volume changes after intraarterial administration of nitroglycerin and/or verapamil.
BACKGROUND:
Radial artery spasm, which is associated with radial artery size, is the main limitation of the transradial approach in percutaneous coronary interventions (PCI).
METHODS:
This prospective, randomized study compared the effect of two intra-arterial vasodilator regimens on radial artery volume: 0.2 mg of nitroglycerin plus 2.5 mg of verapamil (Group 1; n = 15) versus 2.5 mg of verapamil alone (Group 2; n = 15). Radial artery lumen volume was assessed using IVUS at two time points: at baseline (5 minutes after sheath insertion) and post-vasodilator (1 minute after drug administration). The luminal volume of the radial artery was computed using ECOC Random Fields (ECOC-RF), a technique used for automatic segmentation of luminal borders in longitudinal cut images from IVUS sequences.
RESULTS:
There was a significant increase in arterial lumen volume in both groups, with an increase from 451 ± 177 mm³ to 508 ± 192 mm³ (p = 0.001) in Group 1 and from 456 ± 188 mm³ to 509 ± 170 mm³ (p = 0.001) in Group 2. There were no significant differences between the groups in terms of absolute volume increase (58 mm³ versus 53 mm³, respectively; p = 0.65) or in relative volume increase (14% versus 20%, respectively; p = 0.69).
CONCLUSIONS:
Administration of nitroglycerin plus verapamil or verapamil alone to the radial artery resulted in similar increases in arterial lumen volume according to ECOC-RF IVUS measurements.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ CFC2011 Serial 1797  
Permanent link to this record
 

 
Author Laura Igual; Xavier Perez Sala; Sergio Escalera; Cecilio Angulo; Fernando De la Torre edit   pdf
url  doi
openurl 
  Title Continuous Generalized Procrustes Analysis Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 2 Pages 659–671  
  Keywords (down) Procrustes analysis; 2D shape model; Continuous approach  
  Abstract PR4883, PII: S0031-3203(13)00327-0
Two-dimensional shape models have been successfully applied to solve many problems in computer vision, such as object tracking, recognition, and segmentation. Typically, 2D shape models are learned from a discrete set of image landmarks (corresponding to projection of 3D points of an object), after applying Generalized Procustes Analysis (GPA) to remove 2D rigid transformations. However, the
standard GPA process suffers from three main limitations. Firstly, the 2D training samples do not necessarily cover a uniform sampling of all the 3D transformations of an object. This can bias the estimate of the shape model. Secondly, it can be computationally expensive to learn the shape model by sampling 3D transformations. Thirdly, standard GPA methods use only one reference shape, which can might be insufficient to capture large structural variability of some objects.
To address these drawbacks, this paper proposes continuous generalized Procrustes analysis (CGPA).
CGPA uses a continuous formulation that avoids the need to generate 2D projections from all the rigid 3D transformations. It builds an efficient (in space and time) non-biased 2D shape model from a set of 3D model of objects. A major challenge in CGPA is the need to integrate over the space of 3D rotations, especially when the rotations are parameterized with Euler angles. To address this problem, we introduce the use of the Haar measure. Finally, we extended CGPA to incorporate several reference shapes. Experimental results on synthetic and real experiments show the benefits of CGPA over GPA.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR; HuPBA; 605.203; 600.046;MILAB Approved no  
  Call Number Admin @ si @ IPE2014 Serial 2352  
Permanent link to this record
 

 
Author Julio C. S. Jacques Junior; Yagmur Gucluturk; Marc Perez; Umut Guçlu; Carlos Andujar; Xavier Baro; Hugo Jair Escalante; Isabelle Guyon; Marcel A. J. van Gerven; Rob van Lier; Sergio Escalera edit  doi
openurl 
  Title First Impressions: A Survey on Vision-Based Apparent Personality Trait Analysis Type Journal Article
  Year 2022 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 13 Issue 1 Pages 75-95  
  Keywords (down) Personality computing; first impressions; person perception; big-five; subjective bias; computer vision; machine learning; nonverbal signals; facial expression; gesture; speech analysis; multi-modal recognition  
  Abstract Personality analysis has been widely studied in psychology, neuropsychology, and signal processing fields, among others. From the past few years, it also became an attractive research area in visual computing. From the computational point of view, by far speech and text have been the most considered cues of information for analyzing personality. However, recently there has been an increasing interest from the computer vision community in analyzing personality from visual data. Recent computer vision approaches are able to accurately analyze human faces, body postures and behaviors, and use these information to infer apparent personality traits. Because of the overwhelming research interest in this topic, and of the potential impact that this sort of methods could have in society, we present in this paper an up-to-date review of existing vision-based approaches for apparent personality trait recognition. We describe seminal and cutting edge works on the subject, discussing and comparing their distinctive features and limitations. Future venues of research in the field are identified and discussed. Furthermore, aspects on the subjectivity in data labeling/evaluation, as well as current datasets and challenges organized to push the research on the field are reviewed.  
  Address 1 Jan.-March 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MV;OR;MILAB Approved no  
  Call Number Admin @ si @ JGP2022 Serial 3724  
Permanent link to this record
 

 
Author Albert Clapes; Alex Pardo; Oriol Pujol; Sergio Escalera edit   pdf
url  openurl
  Title Action detection fusing multiple Kinects and a WIMU: an application to in-home assistive technology for the elderly Type Journal Article
  Year 2018 Publication Machine Vision and Applications Abbreviated Journal MVAP  
  Volume 29 Issue 5 Pages 765–788  
  Keywords (down) Multimodal activity detection; Computer vision; Inertial sensors; Dense trajectories; Dynamic time warping; Assistive technology  
  Abstract We present a vision-inertial system which combines two RGB-Depth devices together with a wearable inertial movement unit in order to detect activities of the daily living. From multi-view videos, we extract dense trajectories enriched with a histogram of normals description computed from the depth cue and bag them into multi-view codebooks. During the later classification step a multi-class support vector machine with a RBF- 2 kernel combines the descriptions at kernel level. In order to perform action detection from the videos, a sliding window approach is utilized. On the other hand, we extract accelerations, rotation angles, and jerk features from the inertial data collected by the wearable placed on the user’s dominant wrist. During gesture spotting, a dynamic time warping is applied and the aligning costs to a set of pre-selected gesture sub-classes are thresholded to determine possible detections. The outputs of the two modules are combined in a late-fusion fashion. The system is validated in a real-case scenario with elderly from an elder home. Learning-based fusion results improve the ones from the single modalities, demonstrating the success of such multimodal approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj;MILAB Approved no  
  Call Number Admin @ si @ CPP2018 Serial 3125  
Permanent link to this record
 

 
Author Mohammad Ali Bagheri; Qigang Gao; Sergio Escalera edit  doi
openurl 
  Title Combining Local and Global Learners in the Pairwise Multiclass Classification Type Journal Article
  Year 2015 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 18 Issue 4 Pages 845-860  
  Keywords (down) Multiclass classification; Pairwise approach; One-versus-one  
  Abstract Pairwise classification is a well-known class binarization technique that converts a multiclass problem into a number of two-class problems, one problem for each pair of classes. However, in the pairwise technique, nuisance votes of many irrelevant classifiers may result in a wrong class prediction. To overcome this problem, a simple, but efficient method is proposed and evaluated in this paper. The proposed method is based on excluding some classes and focusing on the most probable classes in the neighborhood space, named Local Crossing Off (LCO). This procedure is performed by employing a modified version of standard K-nearest neighbor and large margin nearest neighbor algorithms. The LCO method takes advantage of nearest neighbor classification algorithm because of its local learning behavior as well as the global behavior of powerful binary classifiers to discriminate between two classes. Combining these two properties in the proposed LCO technique will avoid the weaknesses of each method and will increase the efficiency of the whole classification system. On several benchmark datasets of varying size and difficulty, we found that the LCO approach leads to significant improvements using different base learners. The experimental results show that the proposed technique not only achieves better classification accuracy in comparison to other standard approaches, but also is computationally more efficient for tackling classification problems which have a relatively large number of target classes.  
  Address  
  Corporate Author Thesis  
  Publisher Springer London Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-7541 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BGE2014 Serial 2441  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: