|
Records |
Links |
|
Author |
Egils Avots; M. Daneshmanda; Andres Traumann; Sergio Escalera; G. Anbarjafaria |


|
|
Title |
Automatic garment retexturing based on infrared information |
Type |
Journal Article |
|
Year |
2016 |
Publication |
Computers & Graphics |
Abbreviated Journal |
CG |
|
|
Volume |
59 |
Issue |
|
Pages  |
28-38 |
|
|
Keywords |
Garment Retexturing; Texture Mapping; Infrared Images; RGB-D Acquisition Devices; Shading |
|
|
Abstract |
This paper introduces a new automatic technique for garment retexturing using a single static image along with the depth and infrared information obtained using the Microsoft Kinect II as the RGB-D acquisition device. First, the garment is segmented out from the image using either the Breadth-First Search algorithm or the semi-automatic procedure provided by the GrabCut method. Then texture domain coordinates are computed for each pixel belonging to the garment using normalised 3D information. Afterwards, shading is applied to the new colours from the texture image. As the main contribution of the proposed method, the latter information is obtained based on extracting a linear map transforming the colour present on the infrared image to that of the RGB colour channels. One of the most important impacts of this strategy is that the resulting retexturing algorithm is colour-, pattern- and lighting-invariant. The experimental results show that it can be used to produce realistic representations, which is substantiated through implementing it under various experimentation scenarios, involving varying lighting intensities and directions. Successful results are accomplished also on video sequences, as well as on images of subjects taking different poses. Based on the Mean Opinion Score analysis conducted on many randomly chosen users, it has been shown to produce more realistic-looking results compared to the existing state-of-the-art methods suggested in the literature. From a wide perspective, the proposed method can be used for retexturing all sorts of segmented surfaces, although the focus of this study is on garment retexturing, and the investigation of the configurations is steered accordingly, since the experiments target an application in the context of virtual fitting rooms. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB; |
Approved |
no |
|
|
Call Number |
Admin @ si @ ADT2016 |
Serial |
2759 |
|
Permanent link to this record |
|
|
|
|
Author |
Jelena Gorbova; Egils Avots; Iiris Lusi; Mark Fishel; Sergio Escalera; Gholamreza Anbarjafari |

|
|
Title |
Integrating Vision and Language for First Impression Personality Analysis |
Type |
Journal Article |
|
Year |
2018 |
Publication |
IEEE Multimedia |
Abbreviated Journal |
MULTIMEDIA |
|
|
Volume |
25 |
Issue |
2 |
Pages  |
24 - 33 |
|
|
Keywords |
|
|
|
Abstract |
The authors present a novel methodology for analyzing integrated audiovisual signals and language to assess a persons personality. An evaluation of their proposed multimodal method using a job candidate screening system that predicted five personality traits from a short video demonstrates the methods effectiveness. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; 602.133;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ GAL2018 |
Serial |
3124 |
|
Permanent link to this record |
|
|
|
|
Author |
Ajian Liu; Xuan Li; Jun Wan; Yanyan Liang; Sergio Escalera; Hugo Jair Escalante; Meysam Madadi; Yi Jin; Zhuoyuan Wu; Xiaogang Yu; Zichang Tan; Qi Yuan; Ruikun Yang; Benjia Zhou; Guodong Guo; Stan Z. Li |


|
|
Title |
Cross-ethnicity Face Anti-spoofing Recognition Challenge: A Review |
Type |
Journal Article |
|
Year |
2020 |
Publication |
IET Biometrics |
Abbreviated Journal |
BIO |
|
|
Volume |
10 |
Issue |
1 |
Pages  |
24-43 |
|
|
Keywords |
|
|
|
Abstract |
Face anti-spoofing is critical to prevent face recognition systems from a security breach. The biometrics community has %possessed achieved impressive progress recently due the excellent performance of deep neural networks and the availability of large datasets. Although ethnic bias has been verified to severely affect the performance of face recognition systems, it still remains an open research problem in face anti-spoofing. Recently, a multi-ethnic face anti-spoofing dataset, CASIA-SURF CeFA, has been released with the goal of measuring the ethnic bias. It is the largest up to date cross-ethnicity face anti-spoofing dataset covering 3 ethnicities, 3 modalities, 1,607 subjects, 2D plus 3D attack types, and the first dataset including explicit ethnic labels among the recently released datasets for face anti-spoofing. We organized the Chalearn Face Anti-spoofing Attack Detection Challenge which consists of single-modal (e.g., RGB) and multi-modal (e.g., RGB, Depth, Infrared (IR)) tracks around this novel resource to boost research aiming to alleviate the ethnic bias. Both tracks have attracted 340 teams in the development stage, and finally 11 and 8 teams have submitted their codes in the single-modal and multi-modal face anti-spoofing recognition challenges, respectively. All the results were verified and re-ran by the organizing team, and the results were used for the final ranking. This paper presents an overview of the challenge, including its design, evaluation protocol and a summary of results. We analyze the top ranked solutions and draw conclusions derived from the competition. In addition we outline future work directions. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HUPBA; no proj;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ LLW2020b |
Serial |
3523 |
|
Permanent link to this record |
|
|
|
|
Author |
Sergio Escalera |


|
|
Title |
Multi-Modal Human Behaviour Analysis from Visual Data Sources |
Type |
Journal |
|
Year |
2013 |
Publication |
ERCIM News journal |
Abbreviated Journal |
ERCIM |
|
|
Volume |
95 |
Issue |
|
Pages  |
21-22 |
|
|
Keywords |
|
|
|
Abstract |
The Human Pose Recovery and Behaviour Analysis group (HuPBA), University of Barcelona, is developing a line of research on multi-modal analysis of humans in visual data. The novel technology is being applied in several scenarios with high social impact, including sign language recognition, assisted technology and supported diagnosis for the elderly and people with mental/physical disabilities, fitness conditioning, and Human Computer Interaction. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0926-4981 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
HuPBA;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ Esc2013 |
Serial |
2361 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Rodriguez; Miguel Angel Bautista; Sergio Escalera; Jordi Gonzalez |


|
|
Title |
Beyond Oneshot Encoding: lower dimensional target embedding |
Type |
Journal Article |
|
Year |
2018 |
Publication |
Image and Vision Computing |
Abbreviated Journal |
IMAVIS |
|
|
Volume |
75 |
Issue |
|
Pages  |
21-31 |
|
|
Keywords |
Error correcting output codes; Output embeddings; Deep learning; Computer vision |
|
|
Abstract |
Target encoding plays a central role when learning Convolutional Neural Networks. In this realm, one-hot encoding is the most prevalent strategy due to its simplicity. However, this so widespread encoding schema assumes a flat label space, thus ignoring rich relationships existing among labels that can be exploited during training. In large-scale datasets, data does not span the full label space, but instead lies in a low-dimensional output manifold. Following this observation, we embed the targets into a low-dimensional space, drastically improving convergence speed while preserving accuracy. Our contribution is two fold: (i) We show that random projections of the label space are a valid tool to find such lower dimensional embeddings, boosting dramatically convergence rates at zero computational cost; and (ii) we propose a normalized eigenrepresentation of the class manifold that encodes the targets with minimal information loss, improving the accuracy of random projections encoding while enjoying the same convergence rates. Experiments on CIFAR-100, CUB200-2011, Imagenet, and MIT Places demonstrate that the proposed approach drastically improves convergence speed while reaching very competitive accuracy rates. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
ISE; HuPBA; 600.098; 602.133; 602.121; 600.119;MILAB |
Approved |
no |
|
|
Call Number |
Admin @ si @ RBE2018 |
Serial |
3120 |
|
Permanent link to this record |