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Abstract

Target encoding plays a central role when learning Convolutional Neural Networks. In this realm,
One-hot encoding is the most prevalent strategy due to its simplicity. However, this so widespread en-
coding schema assumes a flat label space, thus ignoring rich relationships existing among labels that can
be exploited during training. In large-scale datasets, data does not span the full label space, but instead
lies in a low-dimensional output manifold. Following this observation, we embed the targets into a low-
dimensional space, drastically improving convergence speed while preserving accuracy. Our contribution
is two fold: (i) We show that random projections of the label space are a valid tool to find such lower
dimensional embeddings, boosting dramatically convergence rates at zero computational cost; and (ii)
we propose a normalized eigenrepresentation of the class manifold that encodes the targets with minimal
information loss, improving the accuracy of random projections encoding while enjoying the same con-
vergence rates. Experiments on CIFAR-100, CUB200-2011, Imagenet, and MIT Places demonstrate that
the proposed approach drastically improves convergence speed while reaching very competitive accuracy
rates.

Keywords: Error correcting output codes, output embeddings, deep learning, computer vision

1 Introduction
Convolutional Neural Networks lie at the core of the latest breakthroughs in large-scale image recogni-
tion [35, 30], at present even surpassing human performance [20], applied to the classification of objects
[15], faces [31], or scenes [51]. Due to its effectiveness and simplicity, one-hot encoding is still the most
prevalent procedure for addressing such multi-class classification tasks: in essence, a function f : Rp → Zn
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is modeled, that maps image samples to a probability distribution over a discrete set of the n labels of target
categories.

Unfortunately, when the output space grows, class labels do not properly span the full label space,
mainly due to existing label cross-correlations. Consequently, one-hot encoding might result inadequate for
fine-grained classification tasks, since the projection of the outputs into a higher dimensional (orthogonal)
space dramatically increases the parameter space of computed models. In addition, for datasets with a large
number of labels, the ratio of samples per label is typically reduced. This constitutes an additional challenge
for training CNN models in large output spaces, and the reason of slow convergence rates [40].

In order to address the aforementioned limitations, output embeddings have been proposed as an alterna-
tive to the one-hot encoding for training in large output spaces [7]: depending on the specific classification
task at hand, using different output embeddings captures different aspects of the structure of the output
space. Indeed, since embeddings use weight sharing during training for finding simpler (and more natural)
partitions of classes, the latent relationships between categories are included in the modeling process.

According to Akata et al. [2], output embeddings can be categorized as:
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• Data-independent embeddings, such as drawing rows or columns from a Hadamard matrix [21]: data-
independent embeddings produce strong baselines [16], since embedded classes are equidistant due
to the lack of prior knowledge;

• Embeddings based on a priori information, like attributes [1], or hierarchies [39]: unfortunately,
learning from attributes requires expert knowledge or extra labeling effort and hierarchies require a
prior understanding of a taxonomy of classes, and in addition, approaches that use textual data as
prior do not guarantee visual similarity [16]; and

• Learned embeddings, for capturing the semantic structure of word sequences (i.e. annotations) and
images jointly [43]. The main drawbacks of learning output embeddings are the need of a high
amount of data, and a slow training performance.

Thus, in cases where there exist high quality attributes, methods with prior information are preferred,
while in cases of a known equidistant label space, data-independent embeddings are a more suitable al-
ternative. Unfortunately, the architectural design of a model is bound to the particular choice among the
above-mentioned embeddings. Thus, once a model is chosen and trained using an specific output embed-
ding, it is hard to reuse it for another tasks requiring a different type of embedding.

In this paper, Error-Correcting Output Codes (ECOC) are proven to be a better alternative to one-hot
encoding for image recognition, since ECOCs are a generalization of the three embedding categories [14],
so a change in the ECOC matrix will not constitute a change in the chosen architecture. In addition,
ECOCs naturally enable error-correction, low dimensional embedding spaces [6], and bias and variance
error reduction [25].
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Figure 1: This paper proposes to replace the traditional one-hot output scheme of CNNs with a reduced
scheme with at least log2(k) outputs. In addition, when using a hierarchical representation of the data
labels, outputs show that the most discriminative attributes to split the target classes have been learned. In
essence, a decoder computes the similarities of the ”predicted code” in a ”code-matrix”, and subsequently
the output label is then obtained through a softmax layer. The internal code representation is depicted in
a tree structure, where each bit of the code corresponds to the actual learned partition from the data, from
lower partition cost (aquatic) to higher (stripped).

Inspired by the latest advances on ECOCs, we circumvent one-hot encoding by integrating the Error-
Correcting Output Codes into CNNs, as a generalization of output embedding. As a result, a best-of-
both-worlds approach is indeed proposed: compact outputs, data-based hierarchies, and error correction.
Using our approach, training models in low-dimensional spaces drastically improves convergence speed in
comparison to one-hot encoding. Figure 1 shows an overview of the proposed model.

The rest of the paper is organized as follows: Section 2 reviews the existing work most closely related
to this paper. Section 3 presents the contribution of the proposed embedding technique, which is two fold:
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(i) we show that random projections of the label space are suitable for finding useful lower dimensional
embeddings, while boosting dramatically convergence rates at zero computational cost; and (ii) In order
to generate partitions of the label space that are more discriminative than the random encoding (which
generates random partitions of the label space), we also propose a normalized eigenrepresentation of the
class manifold to encode the targets with minimal information loss, thus improving the accuracy of random
projections encoding while enjoying the same convergence rates. Subsequently, the experimental results on
CIFAR-100 [26], CUB200-2011 [41], MIT Places [51], and ImageNet [35] presented in Section 4 show that
our approach drastically improves convergence speed while maintaining a competitive accuracy. Lastly,
Section 5 concludes the paper discussing how, when gradient sparsity on the output neurons is highly
reduced, more robust gradient estimates and better representations can be found.

2 Related work
This section reviews those works on output embeddings most related to ours, in particular those using
ECOC.

Output Embeddings Most of the related literature addresses the challenge of zero-shot learning, i.e. train-
ing a classifier in the absence of labels. Often, the proposed approaches take into account the attributes of
objects [49, 34, 24, 2] related to the different classes through well-known, shared object features.

Due to their computing efficiency based on a divide-and-conquer strategy, output embeddings have
been also proven useful for those multi-class classification problems in which testing all possible class
labels and hierarchical structures is not feasible [4, 41, 43, 7]. Given a large output space, most labels
are usually considered instances of a superior category e.g., sunflower and violet are flower plants. In this
sense, the inherent hierarchical structure of the data makes divide-and-conquer hierarchical output spaces a
suitable alternative to the traditionally flat 1-of-N classifiers. Likewise in the context of language processing,
Mikolov et al. combine Huffman binary codes and hierarchical soft-max in order to map the most frequent
codes to shorter paths in a tree [32].

Because output embeddings enforce weight sharing, they have been also used when the number of
classes is rather large, with no clear inter-class boundaries, and a decaying ratio of the number of examples
per class. In this context, in order to reduce the output space, Weston et al. proposed WSABIE, an online
learning-to-rank algorithm to find an embedding for the labels based on images [44].

In the field of large-scale recognition, hierarchical approaches such as using tree-based priors [38], la-
bel relational graphs [11], CNN hierarchies [46], and HD-CNNs [47] have been proposed. For example in
[29] binary hash codes are used for fast image retrieval. However, such hierarchical approaches need to
be learned, and cannot be easily interchanged with other embeddings. In addition, for approaches learning
codes as latent variables, to find the optimal ones in terms of class separability or error correction is not
guaranteed [29]. Due to all this, ECOC constitute a better alternative for seamless integration with CNNs,
as detailed next.

Error-Correcting Output Codes1 ECOC have been applied in multiple fields such as medical imaging [5],
face and facial-feature recognition [45, 37], and segmentation of human limbs citesanchez2015hupba8k+.
ECOCs are a generic divide-and-conquer framework that combines binary partitions to achieve multi-class
recognition [12]. Their core property is the capability to correct errors of binary classifiers using redun-
dancy, while reducing the bias and variance of the ensemble [25]. Advanced approaches propose to use
them as intermediate representations [23].

ECOC consist of two main steps: coding and decoding. The coding step consists in assigning a
codeword of arbitrary length k to each of the n classes. Codewords are organized in a ”code matrix”
Mk,n ∈ {−1, 1}, where each column is a binary partition on the label space in meta-classes. Since there
are many possible bi-partitions, the design of the code is central for obtaining discriminative ones. In-
deed there are several approaches for generating ECOCs: Exhaustive codes [12], BCH codes [8], random
codes [3], and circular ECOC [17] are few examples of methods that generate codes independently from
the inherent structure of the data.

Although ECOCs can be data-independent and even randomly generated, they can also be learnt from
data: Pujol et al. propose a discriminant ECOC approach based on hierarchical partitions of the output
space [33]. Subsequently, Escalera et al. [13] proposed to split complex problems into easier subclasses,
embedded as binary dichotomizers in the ECOC framework, easier to optimize. In [9], it is also shown

1We use the standard notation in ECOCs: bold capital letters denote matrices (e.g. X) and bold lower-case letters represent vectors
(e.g., z). All non-bold letters denote scalar variables.
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Optimal continuous ECOCs can be found by gradient descent. Griffin & Perona [18] use trees to efficiently
handle multi-class problems, which posteriorly Zhang et al. improved by finding optimal partitions with
spectral ECOCs [50].

In the decoding step, a sample x can be decoded as the output of k binary classifiers {f1(x), f2(x), ..., fk(x)}.
Given the predicted code, the class label y corresponds to the closest row in Mk,n. The most common de-
coding methods are the Hamming and Euclidean distances but there are more sophisticated approaches such
as probabilistic-based decoding, especially with ternary codes [14].

Inspired from latest ECOC advances, we propose to integrate output codes in large-scale deep learning
problems. In this context, few approaches in the literature have been presented: in [10, 11], CNNs are also
used to directly predict the code bits for Optical Character recognition (OCR). We go a step further by:
(i) showing that the convergence speed in large scale settings with millions of images can be dramatically
improved; (ii) instead of directly predicting the code bits, we integrate the euclidean decoding with the
cross-entropy loss, so that the network does not only optimize individual bits independently but also inter-
code distances, which results in error-correction.

Our approach enhances the convergence of CNNs using random codes, i.e. when the inter-class relation-
ships are not considered. We achieve even lower error rates with data-dependent codes, due to using more
efficient data partitions. Similarly, Yang et al. also used CNNs to integrate data-independent Hadamard
Codes with the Euclidean loss [48]. But due to the efficiency of data-dependent codes, our encoding pro-
posal is shown more efficient than [48], by halving the required CNN output size, and eliminating the need
of training multiple CNNs to predict code chunks.

3 Low dimensional target embedding
Figure 1 depicts our proposed model inspired by the ECOC framework [12] and applied for deep supervised
learning. Given a set of n classes, an ECOC consists of a set of k binary partitions of the label space (groups
of classes) representing each of the n classes in the dataset. The codes are usually arranged in a design
matrix M ∈ {−1, 1}n×k.

Let’s define the output of the last layer of a neural network as zl, with l the depth of the network. For
the sake of clarity the identity non-linearity φ(·) is used so that zl = φ(zl). Thus, given the weights of the
previous layer Θ(l−1), and the corresponding bias b(l−1), zl can be computed as Θ(l−1)z(l−1) + b(l−1).

In our case, we reduce the output dimensionality of a CNN, i.e. the dimensionality of zl, from n (the
number of classes) to k, an arbitrary number of partitions. Then, given a design matrix Mn×k, where each
row encodes a class label, the predicted class is obtained by finding the distance of the output with each row
of the design matrix D = M−1>zl, with 1> a column vector constituted by ones, and obtaining the label
with argmin(D). Then, we seamlessly integrate our proposal in the traditional log-likelihood and softmax
loss layer.

3.1 Embedding output codes in CNNs
Given a training set {xi, yi} i = 1 : s, of image-label pairs, CNNs constitute the state-of-the-art at finding
good local minima by empirical risk minimization (ERM) using the cross-entropy as the loss function J by
means of backpropagation [28]:

J(X,Y ; Θ) = −1

s

s∑
i=1

[yilog(ŷ)i + (1− yi)log(1− ŷi)],

where ŷi = argmax(h(zl(xi))) ∈ R is the predicted label for the ith example and yi ∈ {0, 1} the
ground truth label. Since cross-entropy requires probability distributions, the output of the network zl is
fed to a softmax layer that assigns a probability score to each of the n possible classes:

h(zl)j =
ez

l
j∑N

i=1 e
zl
i

, j ∈ {1, 2, ..., n}.

The derivative of the loss function J for gradient descent through backpropagation is known to be:

δJ

δzli
= yi − ŷi.

4



The decoder is introduced between the output zl of the network and the softmax function h(zl). Con-
cretely, the negative normalized Euclidean distance D(zl|M) between zl and the rows in M is used, so
that the output of the softmax represents the probability of the output of the CNN to be decoded as the
ith, i ∈ {1, 2, 3.., n} output word.

We reformulate the softmax function h(zl) as h(D( zl

||zl||2 )), with the variable change of D( zl

||zl||2 ) by
D(U) (with U(z) the normalized vector). The derivative of the loss can be computed using the chain rule:

δJ(D, Y ; Θ)

δz
=
δJ(D, Y ; Θ)

δD

δD

δU

(1) δU

δzl

(2)

.

We now calculate:

δD

δU
=

δ

δU

−1

2
(M− 1>U)(M− 1>U)> = M− 1>U, (1)

δU

δz
=

δ

δz

z

||z||2
=

I||z||2 − zU>

||z||2
. (2)

Given eq. 1 and 2, it is possible to compute the derivative of the cross-entropy with the new decoding
loss Ĵ :

δĴ

δzl
= (Y − Ŷ)[(M− 1>U)

I||zl||2 − zlU>

||zl||2
]>. (3)

Provided the amount of computation that can be shared from the forward pass to the backward pass, this
process does not slow-down the training phase. In fact, the cost is compensated by (i) the shrinkage of z,
which also results in a reduction of the number of network parameters, and (ii) the increase of convergence
speed.

The convergence speed increases because reducing the output layer results in parameter sharing, which
produces more robust gradient estimates. The explanation is that the softmax function distributes the prob-
abilities among a high number of neurons. Thus, the the gradient δJ = yi − ŷi is zero for most outputs
because yi = 1 only once in the ground truth vector, and E(ŷj) = 1

n . Given that the network is certain
about the output i′, the expected output for the rest of the outputs is even smaller E(ŷj 6=i′) = 1−yi′

n−1 .
In other words, output layers with huge number of outputs and smaller mini-batch size can only update

the weights of few output units per iteration, since activation expected value is virtually zero. Thus, the
gradients for these outputs are either zero or based on too few examples. This leads to noisy estimates to
the real loss surface. As a result, reducing the output space with our method increases the ratio of activations
per mini-batch, helping to obtain more robust gradient estimates and increasing convergence speed, reduces
the mini-batch size, and thus the memory requirements.

3.2 Connections with Normalized Cuts
CNNs trained with our approach are robust and fast even when drawing codes from a normal distribution.
The reason is the fact that random gaussian matrices tend to follow the coding properties described in the
literature [12, 19], such as row and column orthogonality. For most large datasets the label space follows a
hierarchical structure and defining random partitions of the label space is rather unnatural. In order to find
the most simple partitions we use an eigenrepresentation of the class manifold based on the class similarities
found in the dataset. Concretely, solving the normalized cut (Ncut) problem on the class similarity graph is
a way of obtaining n uncorrelated low-cost partitions, with n the number of classes [36]. The NCut can be
approximated by solving the eigendecomposition of the normalized Laplacian of the class similarity matrix
LM:

LG = D
1
2 (D−M)D

−1
2 = λV,

where M is the class similarity matrix, D is the degree matrix, λi are the eigenvalues in ascending
order and vi, the corresponding eigenvectors i ∈ {0, 1, 2, ..., k}. Given that λ0 = 0, the eigenvectors
vi, i ∈ {1, ..., k} constitute the partitions ordered by the Ncut cost. As explained in [51], this kind of
codes have desirable properties such as balancing, orthogonality, lower error bounds due to the separability
maximization, and similarity preserving, i.e. similar classes have similar codes. We show that training
CNNs to predict the embedded target, together with this data-based codes, exhibit lower error rates than
using random codes. Contrary to [50], we do not threshold the eigenvectors so as to obtain a binary code
but we interpret the values as likelihoods.
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In the following section, we provide empirical evidence confirming that CNNs trained with our proposed
methodology on CIFAR-100, CUB-200, MIT Places, and Imagenet have faster convergence rates (with
comparable or better recognition rates), even with smaller mini-batch size, than their one-hot counterparts.

4 Experiments
To validate our approach, we perform a thorough analysis of the advantages of embedding output codes in
CNN models over different state-of-the-art datasets. First, we describe the considered datasets, methods
and evaluation.

4.1 Datasets
We first experiment the ImageNet 2012 Large-Scale Visual Recognition Challenge (ILSVRC-2012) [35]
and the MIT Places-205 [51] datasets. ImageNet consists of 1.2M images, and 50K validation images with
10K object classes. MIT Places is constituted by 2.5M images from 205 scene categories for training, and
100 images for category for testing.

Subsequently we experiment on the CIFAR-100 [26] and the Caltech-UCSD Birds-200-2011 [42].
CIFAR-100 consists of 50K 32 × 32 images for training, and 10K 32 × 32 images for testing belonging
to 10 coarse categories and 100 fine-grained categories. CUB-200 contains 11,788 images (5,994 images
for training and 5,794 for test) of 200 bird species, each image annotated with 15 part locations, 312 binary
attributes, and 1 Bounding Box.

4.2 Methods and evaluation
We use standard state-of-the-art models to evaluate the contribution of the proposed target embedding pro-
cedure instead of comparing with state-of-the-art results on the considered datasets. Note that any model,
including more recent and powerful state-of-the-art architectures, can benefit from our target embedding
methodology.

As a proof of concept, we first validate data-independent codes on the Imagenet and MIT Places
datasets. Concretely, we retrain with our approach the fc7 and fc8 layers of an Alexnet model [27]
pre-trained on the respective datasets. Concretely, we randomly reinitialize their weights and train them
using SGD with a global learning rate (lr) of 0.001, and the specific lr of the reinitialized layers is
multiplied by 10.

Then, we demonstrate the advantages of data-dependent codes on the fine-grained CIFAR-100 and
CUB-200 2011. For CIFAR-100, we use the cifar quick models found in the Caffe framework [22].
The network is initialized with noise sampled from a gaussian distribution, and the model is trained for 100
epochs. Fine-tuning on CUB-200 is performed with the same pre-trained model of the Imagenet experi-
ments for 30 epochs, and the lr is divided by 10 after 15 epochs.

Experiments with the standard Alexnet CNN [27] (caffe version [22]) on Imagenet, and MIT Places,
prove that CNNs trained with random codes and our approach show faster convergence rates than using
one-hot encoding, especially for small mini-batch sizes, while matching one-hot in performance for bigger
mini-batch sizes. Thus, the proposed data-dependent encoding approach performs better than using random
codes for fine-grained datasets, with fuzzy inter-class boundaries, essentially because random codes alone
do not take into account the correlation of attributes.

4.3 Random codes for faster convergence
Output encodings allow to embed sparse output spaces into compact representations. For instance, codes
generated with the dense random strategy only need k = 10log(n) bits [3] to encode n classes. An inherent
property of one-hot encoding is the output activation sparsity for huge output spaces. Given a randomly
initialized CNN with one-hot encoding, provided that the output neurons follow a uniform distribution, the
probability assigned to each class will be 1

n , n = #Classes, which tends to 0 for n → ∞. In the final
stages of training, the situation will persist since just an extremely small ratio of the neurons activate, i.e.
a small subset of the neurons show high probability for the predicted class while the residual probability
mass is spread over a much larger number of neurons.

Thus, it can be coarsely estimated that the update probability of the parameters associated to an output
neuron during an SGD step is related to the ratio ρ = bs

n , with mini-batch size bs, being ρ = 256 · 103 for
Alexnet trained on Imagenet, provided that p(Y = ni) = p(Y = nj), i 6= j. In other words, given a label,
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(a) ILSVRC2012, bs=16 (b) ILSVRC2012, bs=32

(c) MIT Places, bs=16 (d) MIT Places, bs=32

Figure 2: Validation accuracy on ILSVRC2012 and MIT Places. Using output codes randomly sampled
from a normal distribution results in faster convergence, especially for small mini-batch sizes (a,c)

sampling more images increases the probability of that label being in the set of samples, and drawing less
samples than the number of labels ensures that at least n− s labels will not be seen during the update.

Figure 2 shows the resulting validation accuracy when training Alexnet on the ILSVRC2012 and MIT
Places for different mini-batches and a random code sampled from N (0, 1). As it can be seen, models
trained with our approach converge faster than those trained with one-hot encoding.

4.4 Using data-based encodings
In order to adapt to fine-grained settings, i.e. with high inter-class correlations, and few examples per class,
we propose to generate the output codes using the eigenvectors of the normalized Laplacian of the class
similarity matrix. Since this eigendecomposition generates the most discriminating, hierarchical partitions
based on the data, models trained with this data-dependent codes result in higher accuracy bounds than the
random counterparts.

To confirm the aforementioned advantages of using data-dependent codes we choose to experiment on
the well-established CIFAR-100 and CUB-200 2011 fine-grained datasets. see Fig. 3. We use CIFAR-100
for fast experimentation, and then we apply the best setting to CUB-200.

CIFAR-100. First, we evaluate different procedures for generating the codes:

1. One-hot. A vector of n− 1 zeros and a one at the target position (with n the number of classes).
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Figure 3: Classification accuracy based on the number of the code bits. As expected, the same amount of
information is encoded for each of the one-hot bits while the same results are obtained with just the 25% of
the data-based codes.

Code One-hot Gaussian
Binarization - - Zero Median
Length 66 100 200 66 100 200 66 100 200 66 100 200
Accuracy (%) 32.4 49.2 - 44.9 44.8 44.8 45.0 47.1 49.1 45.6 47.8 48.4

Dense Random Data-dependent
- - - - Zero Median

66 100 200 66 99 200 66 99 200 66 99 200
43.9 44.5 44.3 48.0 50.0 49.7 46.7 49.0 48.9 47.4 47.8 49.7

Table 1: Influence of code designs on CIFAR-100. Dense output encodings are more robust than One-hot
to the loss of bits. As expected, data-based codes outperform the rest of encodings (50%), especially when
no threshold is applied to binarize the code.

(a) One-hot. (b) Dense random. (c) Data-based.

Figure 4: T-sne visualization on CIFAR-100 on the ten coarse categories for the hidden fc layer of a CNN
trained with (a) one-hot encoding, (b) an output code generated with the dense random strategy, and (c) a
data-based code.

2. Dense random [3]. Sampling the matrix with the most uncorrelated rows and columns from U(0, 1).
3. Gaussian. Sampling matrices from a normal distribution.
4. Data-based. Constructing the code matrix from the eigenvalues of the class similarity Laplacian.

Note that Gaussian and Data-based codes are composed of real numbers and a thresholding function
should be applied for obtaining binary partitions. We test thresholding at zero and the median of the rows
of the code matrix. Additionally, we test the raw values, interpreting them as the likelihood of the kth

metaclass to be present in the nth class.
As it can be seen in table 1, output encodings are more robust, losing a smaller percentage of the

8



Figure 5: Validation accuracy on CUB200. Plots have been generated for different mini-batch sizes. (a)
when mini-batch size is 16, the performance of one-hot encoding is dramatically reduced

accuracy when the number of code-bits are halved, while one-hot scales linearly with the number of bits,
see 3a for a detailed analysis. In addition, data-based codes find the more discriminative partitions, resulting
in better accuracy than the rest of the encodings. Moreover, keeping the raw values of the eigenvectors
provides additional information about the likelihood of a metaclass to be present in a certain class, resulting
in more robust predictions. Since output codes are based on binary partitions, they constrain the learning so
that features are encoded to fall into hyperplanes.

In figure 4 we show the 2D projection of those hyperplanes using t-sne. Note the higher overlapping
of samples from different classes displayed on the target embedding space of 1-hot in comparison to dense
and data-dependent alternatives. In particular, the proposed eigendecomposition of the output space shows
a more discriminative splitting of the data samples according to their labels.
CUB-200. Figure 5 shows that using small mini-batch sizes with data-based encodings largely outperforms
the one-hot baseline for different code lengths when training a CNN on CUB-200 with data-dependent
codes based on the raw eigenvalues of the class similarity matrix (best setting on CIFAR100). Moreover,
in figure 3b, it can be seen that the data-based code matches the one-hot encoding with just the 25% of the
bits. As expected, the first bits correspond to the most discriminative partitions ordered by cut cost. The
class similarity matrix was built with the fc7 outputs of a pre-trained network, but any other would also
work if it reflects the inter-class relationships.

Figure 6 contains the confusion matrices for ten of the CUB-200 classes. Note that data-dependent
encodings find low cost partitions, discriminating classes prone to be confused in the first stages of the hier-
archy (the first encoding bits), and keeping those harder classification problems to the leafs. A comparison
of one-hot, random and data-dependent encodings for the classification of ”Fish crow” and ”Grackle” is
shown in figure 8.
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(a) One-hot encoding. (b) Random encoding.

(c) Data-dependent code.

Figure 6: Confusion matrices on CUB200-2011. Alexnet trained with random codes sampled from a
normal distribution (b) already advantage those trained with one-hot encoding (a) e.g., reducing the number
of confusions of ”Olive sided Flycatcher” with the rest of the classes. Moreover, data-dependent codes
based on eigenrepresentations of the output space (d), can better discriminate even more classes, like ”boat
tailed Grackle” from ”Fish crow”. Samples for the classes in the confusion matrices are shown in figure 7.
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Olive sided 
flycatcher

Boar tailed 
Grackle

Long tailed 
Jaeger Fish Crow

Red eyed 
Vireo

Mockingbird American 
Pipit

Sayornis

House 
Sparrow

Rusty 
Blackbird

Figure 7: Confusion matrix classes.
Code bit 1 2 3 4 5 6

Attribute Belly-color
red

Head-pattern
eyeline

breast-color
blue

bill-color
green

head-pattern
unique

crown-color
yellow

PCC 0.18 0.16 0.15 0.15 0.14 0.14

Attribute Tail-shape
rounded

Under-tail-color
iridiscent

biill-color
brown

belly-color
pink

bill-shape
all-purpose

tail-shape
forked

PCC -0.22 -0.17 -0.17 -0.16 -0.18 -0.18

(a) Random Code.
Code bit 1 2 3 4 5 6

Attribute shape
perching-like

primary-color
yellow

back-color
black

bill-color
black

throat-color
yellow

upperpart-color
white

PCC 0.79 0.64 0.50 0.44 0.53 0.55

Attribute size:medium upper-tail-color
brown

wing-color
grey

primary-color
red

primary-color
rufous

belly-color
black

PCC -0.73 -0.56 -0.58 -0.38 -0.42 -0.48

(b) Data-dependent code.

Table 2: Top CUB200 attributes by correlation with the code. Random codes do not show relevant
correlations with the data attributes, while data-dependent codes are visibly correlated with the attributes.
Concretely, the first bit of the code, i.e. the partition with the lowest cut cost, is highly correlated with shape
and size attributes (0.79). The sign of the PPC indicates the expected side of the bi-partition associated for
the attribute. As expected, the PPC coefficient decreases in absolute value as the cut cost increases, since
higher bits correspond to increasingly difficult partitions.

We lastly verify the correspondence of the metaclasses found with data-dependent encodings by com-
puting the Pearson Correlation Coefficient (CCP) between the columns of the code-matrix and the attributes
associated to each of the CUB-200 classes, see table 2.

As expected, the data-dependent code finds a high-level partition that already discriminates both classes.
One-hot, instead acts directly at the class level, without being explicitly based on shared attributes. On the
other hand, random codes, although also based on metaclasses (attributes), do not guarantee that those
metaclasses are the most discriminative ones.

5 Conclusion
In this work, output codes are integrated with the training of deep CNNs on large-scale datasets. We
found that CNNs trained on CIFAR-100, CUB200, Imagenet, and MIT Places using our approach show
less sparsity at the output neurons. As a result, models trained with our approach showed more robust
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Boat tailed Grackle Fish Crow

One-hot Random Data-dependent

Figure 8: Classifying Boat tailed Grackle and Fish Crow. One-hot encoding directly assigns labels
to each of the examples. Random encoding partitions groups of classes into meta-classes systematically.
Data-depending codes first group aquatic and non-aquatic birds, eliminating posterior confusions.

gradient estimates and faster convergence rates than those trained with the prevalent one-hot encoding at
a small cost, especially for huge label spaces. As a side effect, CNNs trained with our approach can use
smaller minibatch sizes, lowering the memory consumption. Moreover, we showed that training with data-
dependent codes based on eigenrepresentations of the class space allows for more efficient, hierarchical
representations, achieving lower error rates than those trained with data-independent output codes.
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