toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Laura Igual; Xavier Perez Sala; Sergio Escalera; Cecilio Angulo; Fernando De la Torre edit   pdf
url  doi
openurl 
  Title Continuous Generalized Procrustes Analysis Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 2 Pages (down) 659–671  
  Keywords Procrustes analysis; 2D shape model; Continuous approach  
  Abstract PR4883, PII: S0031-3203(13)00327-0
Two-dimensional shape models have been successfully applied to solve many problems in computer vision, such as object tracking, recognition, and segmentation. Typically, 2D shape models are learned from a discrete set of image landmarks (corresponding to projection of 3D points of an object), after applying Generalized Procustes Analysis (GPA) to remove 2D rigid transformations. However, the
standard GPA process suffers from three main limitations. Firstly, the 2D training samples do not necessarily cover a uniform sampling of all the 3D transformations of an object. This can bias the estimate of the shape model. Secondly, it can be computationally expensive to learn the shape model by sampling 3D transformations. Thirdly, standard GPA methods use only one reference shape, which can might be insufficient to capture large structural variability of some objects.
To address these drawbacks, this paper proposes continuous generalized Procrustes analysis (CGPA).
CGPA uses a continuous formulation that avoids the need to generate 2D projections from all the rigid 3D transformations. It builds an efficient (in space and time) non-biased 2D shape model from a set of 3D model of objects. A major challenge in CGPA is the need to integrate over the space of 3D rotations, especially when the rotations are parameterized with Euler angles. To address this problem, we introduce the use of the Haar measure. Finally, we extended CGPA to incorporate several reference shapes. Experimental results on synthetic and real experiments show the benefits of CGPA over GPA.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR; HuPBA; 605.203; 600.046;MILAB Approved no  
  Call Number Admin @ si @ IPE2014 Serial 2352  
Permanent link to this record
 

 
Author Ricardo Dario Perez Principi; Cristina Palmero; Julio C. S. Jacques Junior; Sergio Escalera edit   pdf
url  doi
openurl 
  Title On the Effect of Observed Subject Biases in Apparent Personality Analysis from Audio-visual Signals Type Journal Article
  Year 2021 Publication IEEE Transactions on Affective Computing Abbreviated Journal TAC  
  Volume 12 Issue 3 Pages (down) 607-621  
  Keywords  
  Abstract Personality perception is implicitly biased due to many subjective factors, such as cultural, social, contextual, gender and appearance. Approaches developed for automatic personality perception are not expected to predict the real personality of the target, but the personality external observers attributed to it. Hence, they have to deal with human bias, inherently transferred to the training data. However, bias analysis in personality computing is an almost unexplored area. In this work, we study different possible sources of bias affecting personality perception, including emotions from facial expressions, attractiveness, age, gender, and ethnicity, as well as their influence on prediction ability for apparent personality estimation. To this end, we propose a multi-modal deep neural network that combines raw audio and visual information alongside predictions of attribute-specific models to regress apparent personality. We also analyse spatio-temporal aggregation schemes and the effect of different time intervals on first impressions. We base our study on the ChaLearn First Impressions dataset, consisting of one-person conversational videos. Our model shows state-of-the-art results regressing apparent personality based on the Big-Five model. Furthermore, given the interpretability nature of our network design, we provide an incremental analysis on the impact of each possible source of bias on final network predictions.  
  Address 1 July-Sept. 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no proj Approved no  
  Call Number Admin @ si @ PPJ2019 Serial 3312  
Permanent link to this record
 

 
Author Laura Igual; Joan Carles Soliva; Sergio Escalera; Roger Gimeno; Oscar Vilarroya; Petia Radeva edit   pdf
url  doi
openurl 
  Title Automatic Brain Caudate Nuclei Segmentation and Classification in Diagnostic of Attention-Deficit/Hyperactivity Disorder Type Journal Article
  Year 2012 Publication Computerized Medical Imaging and Graphics Abbreviated Journal CMIG  
  Volume 36 Issue 8 Pages (down) 591-600  
  Keywords Automatic caudate segmentation; Attention-Deficit/Hyperactivity Disorder; Diagnostic test; Machine learning; Decision stumps; Dissociated dipoles  
  Abstract We present a fully automatic diagnostic imaging test for Attention-Deficit/Hyperactivity Disorder diagnosis assistance based on previously found evidences of caudate nucleus volumetric abnormalities. The proposed method consists of different steps: a new automatic method for external and internal segmentation of caudate based on Machine Learning methodologies; the definition of a set of new volume relation features, 3D Dissociated Dipoles, used for caudate representation and classification. We separately validate the contributions using real data from a pediatric population and show precise internal caudate segmentation and discrimination power of the diagnostic test, showing significant performance improvements in comparison to other state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes OR; HuPBA; MILAB Approved no  
  Call Number Admin @ si @ ISE2012 Serial 2143  
Permanent link to this record
 

 
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
doi  openurl
  Title Real-time Isolated Hand Sign Language RecognitioN Using Deep Networks and SVD Type Journal
  Year 2022 Publication Journal of Ambient Intelligence and Humanized Computing Abbreviated Journal  
  Volume 13 Issue Pages (down) 591–611  
  Keywords  
  Abstract One of the challenges in computer vision models, especially sign language, is real-time recognition. In this work, we present a simple yet low-complex and efficient model, comprising single shot detector, 2D convolutional neural network, singular value decomposition (SVD), and long short term memory, to real-time isolated hand sign language recognition (IHSLR) from RGB video. We employ the SVD method as an efficient, compact, and discriminative feature extractor from the estimated 3D hand keypoints coordinators. Despite the previous works that employ the estimated 3D hand keypoints coordinates as raw features, we propose a novel and revolutionary way to apply the SVD to the estimated 3D hand keypoints coordinates to get more discriminative features. SVD method is also applied to the geometric relations between the consecutive segments of each finger in each hand and also the angles between these sections. We perform a detailed analysis of recognition time and accuracy. One of our contributions is that this is the first time that the SVD method is applied to the hand pose parameters. Results on four datasets, RKS-PERSIANSIGN (99.5±0.04), First-Person (91±0.06), ASVID (93±0.05), and isoGD (86.1±0.04), confirm the efficiency of our method in both accuracy (mean+std) and time recognition. Furthermore, our model outperforms or gets competitive results with the state-of-the-art alternatives in IHSLR and hand action recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ RKE2022a Serial 3660  
Permanent link to this record
 

 
Author Pierluigi Casale; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title Personalization and User Verification in Wearable Systems using Biometric Walking Patterns Type Journal Article
  Year 2012 Publication Personal and Ubiquitous Computing Abbreviated Journal PUC  
  Volume 16 Issue 5 Pages (down) 563-580  
  Keywords  
  Abstract In this article, a novel technique for user’s authentication and verification using gait as a biometric unobtrusive pattern is proposed. The method is based on a two stages pipeline. First, a general activity recognition classifier is personalized for an specific user using a small sample of her/his walking pattern. As a result, the system is much more selective with respect to the new walking pattern. A second stage verifies whether the user is an authorized one or not. This stage is defined as a one-class classification problem. In order to solve this problem, a four-layer architecture is built around the geometric concept of convex hull. This architecture allows to improve robustness to outliers, modeling non-convex shapes, and to take into account temporal coherence information. Two different scenarios are proposed as validation with two different wearable systems. First, a custom high-performance wearable system is built and used in a free environment. A second dataset is acquired from an Android-based commercial device in a ‘wild’ scenario with rough terrains, adversarial conditions, crowded places and obstacles. Results on both systems and datasets are very promising, reducing the verification error rates by an order of magnitude with respect to the state-of-the-art technologies.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1617-4909 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HuPBA Approved no  
  Call Number Admin @ si @ CPR2012 Serial 1706  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: