toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author (up) Meysam Madadi; Sergio Escalera; Jordi Gonzalez; Xavier Roca; Felipe Lumbreras edit  doi
openurl 
  Title Multi-part body segmentation based on depth maps for soft biometry analysis Type Journal Article
  Year 2015 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 56 Issue Pages 14-21  
  Keywords 3D shape context; 3D point cloud alignment; Depth maps; Human body segmentation; Soft biometry analysis  
  Abstract This paper presents a novel method extracting biometric measures using depth sensors. Given a multi-part labeled training data, a new subject is aligned to the best model of the dataset, and soft biometrics such as lengths or circumference sizes of limbs and body are computed. The process is performed by training relevant pose clusters, defining a representative model, and fitting a 3D shape context descriptor within an iterative matching procedure. We show robust measures by applying orthogonal plates to body hull. We test our approach in a novel full-body RGB-Depth data set, showing accurate estimation of soft biometrics and better segmentation accuracy in comparison with random forest approach without requiring large training data.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; ISE; ADAS; 600.076;600.049; 600.063; 600.054; 302.018;MILAB Approved no  
  Call Number Admin @ si @ MEG2015 Serial 2588  
Permanent link to this record
 

 
Author (up) Meysam Madadi; Sergio Escalera; Xavier Baro; Jordi Gonzalez edit   pdf
doi  openurl
  Title End-to-end Global to Local CNN Learning for Hand Pose Recovery in Depth data Type Journal Article
  Year 2022 Publication IET Computer Vision Abbreviated Journal IETCV  
  Volume 16 Issue 1 Pages 50-66  
  Keywords Computer vision; data acquisition; human computer interaction; learning (artificial intelligence); pose estimation  
  Abstract Despite recent advances in 3D pose estimation of human hands, especially thanks to the advent of CNNs and depth cameras, this task is still far from being solved. This is mainly due to the highly non-linear dynamics of fingers, which make hand model training a challenging task. In this paper, we exploit a novel hierarchical tree-like structured CNN, in which branches are trained to become specialized in predefined subsets of hand joints, called local poses. We further fuse local pose features, extracted from hierarchical CNN branches, to learn higher order dependencies among joints in the final pose by end-to-end training. Lastly, the loss function used is also defined to incorporate appearance and physical constraints about doable hand motion and deformation. Finally, we introduce a non-rigid data augmentation approach to increase the amount of training depth data. Experimental results suggest that feeding a tree-shaped CNN, specialized in local poses, into a fusion network for modeling joints correlations and dependencies, helps to increase the precision of final estimations, outperforming state-of-the-art results on NYU and SyntheticHand datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; ISE; 600.098; 600.119;MV;OR;MILAB Approved no  
  Call Number Admin @ si @ MEB2022 Serial 3652  
Permanent link to this record
 

 
Author (up) Miguel Angel Bautista; Antonio Hernandez; Sergio Escalera; Laura Igual; Oriol Pujol; Josep Moya; Veronica Violant; Maria Teresa Anguera edit   pdf
doi  openurl
  Title A Gesture Recognition System for Detecting Behavioral Patterns of ADHD Type Journal Article
  Year 2016 Publication IEEE Transactions on System, Man and Cybernetics, Part B Abbreviated Journal TSMCB  
  Volume 46 Issue 1 Pages 136-147  
  Keywords Gesture Recognition; ADHD; Gaussian Mixture Models; Convex Hulls; Dynamic Time Warping; Multi-modal RGB-Depth data  
  Abstract We present an application of gesture recognition using an extension of Dynamic Time Warping (DTW) to recognize behavioural patterns of Attention Deficit Hyperactivity Disorder (ADHD). We propose an extension of DTW using one-class classifiers in order to be able to encode the variability of a gesture category, and thus, perform an alignment between a gesture sample and a gesture class. We model the set of gesture samples of a certain gesture category using either GMMs or an approximation of Convex Hulls. Thus, we add a theoretical contribution to classical warping path in DTW by including local modeling of intra-class gesture variability. This methodology is applied in a clinical context, detecting a group of ADHD behavioural patterns defined by experts in psychology/psychiatry, to provide support to clinicians in the diagnose procedure. The proposed methodology is tested on a novel multi-modal dataset (RGB plus Depth) of ADHD children recordings with behavioural patterns. We obtain satisfying results when compared to standard state-of-the-art approaches in the DTW context.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; MILAB; Approved no  
  Call Number Admin @ si @ BHE2016 Serial 2566  
Permanent link to this record
 

 
Author (up) Miguel Angel Bautista; Oriol Pujol; Fernando De la Torre; Sergio Escalera edit   pdf
url  doi
openurl 
  Title Error-Correcting Factorization Type Journal Article
  Year 2018 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 40 Issue Pages 2388-2401  
  Keywords  
  Abstract Error Correcting Output Codes (ECOC) is a successful technique in multi-class classification, which is a core problem in Pattern Recognition and Machine Learning. A major advantage of ECOC over other methods is that the multi- class problem is decoupled into a set of binary problems that are solved independently. However, literature defines a general error-correcting capability for ECOCs without analyzing how it distributes among classes, hindering a deeper analysis of pair-wise error-correction. To address these limitations this paper proposes an Error-Correcting Factorization (ECF) method, our contribution is three fold: (I) We propose a novel representation of the error-correction capability, called the design matrix, that enables us to build an ECOC on the basis of allocating correction to pairs of classes. (II) We derive the optimal code length of an ECOC using rank properties of the design matrix. (III) ECF is formulated as a discrete optimization problem, and a relaxed solution is found using an efficient constrained block coordinate descent approach. (IV) Enabled by the flexibility introduced with the design matrix we propose to allocate the error-correction on classes that are prone to confusion. Experimental results in several databases show that when allocating the error-correction to confusable classes ECF outperforms state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA; no menciona;MILAB Approved no  
  Call Number Admin @ si @ BPT2018 Serial 3015  
Permanent link to this record
 

 
Author (up) Miguel Angel Bautista; Sergio Escalera; Oriol Pujol edit   pdf
doi  openurl
  Title On the Design of an ECOC-Compliant Genetic Algorithm Type Journal Article
  Year 2014 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 47 Issue 2 Pages 865-884  
  Keywords  
  Abstract Genetic Algorithms (GA) have been previously applied to Error-Correcting Output Codes (ECOC) in state-of-the-art works in order to find a suitable coding matrix. Nevertheless, none of the presented techniques directly take into account the properties of the ECOC matrix. As a result the considered search space is unnecessarily large. In this paper, a novel Genetic strategy to optimize the ECOC coding step is presented. This novel strategy redefines the usual crossover and mutation operators in order to take into account the theoretical properties of the ECOC framework. Thus, it reduces the search space and lets the algorithm to converge faster. In addition, a novel operator that is able to enlarge the code in a smart way is introduced. The novel methodology is tested on several UCI datasets and four challenging computer vision problems. Furthermore, the analysis of the results done in terms of performance, code length and number of Support Vectors shows that the optimization process is able to find very efficient codes, in terms of the trade-off between classification performance and the number of classifiers. Finally, classification performance per dichotomizer results shows that the novel proposal is able to obtain similar or even better results while defining a more compact number of dichotomies and SVs compared to state-of-the-art approaches.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ BEP2013 Serial 2254  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: