toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
openurl 
  Title A deep co-attentive hand-based video question answering framework using multi-view skeleton Type Journal Article
  Year 2023 Publication Multimedia Tools and Applications Abbreviated Journal (up) MTAP  
  Volume 82 Issue Pages 1401–1429  
  Keywords  
  Abstract In this paper, we present a novel hand –based Video Question Answering framework, entitled Multi-View Video Question Answering (MV-VQA), employing the Single Shot Detector (SSD), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Bidirectional Encoder Representations from Transformers (BERT), and Co-Attention mechanism with RGB videos as the inputs. Our model includes three main blocks: vision, language, and attention. In the vision block, we employ a novel representation to obtain some efficient multiview features from the hand object using the combination of five 3DCNNs and one LSTM network. To obtain the question embedding, we use the BERT model in language block. Finally, we employ a co-attention mechanism on vision and language features to recognize the final answer. For the first time, we propose such a hand-based Video-QA framework including the multi-view hand skeleton features combined with the question embedding and co-attention mechanism. Our framework is capable of processing the arbitrary numbers of questions in the dataset annotations. There are different application domains for this framework. Here, as an application domain, we applied our framework to dynamic hand gesture recognition for the first time. Since the main object in dynamic hand gesture recognition is the human hand, we performed a step-by-step analysis of the hand detection and multi-view hand skeleton impact on the model performance. Evaluation results on five datasets, including two datasets in VideoQA, two datasets in dynamic hand gesture, and one dataset in hand action recognition show that MV-VQA outperforms state-of-the-art alternatives.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA Approved no  
  Call Number Admin @ si @ RKE2023b Serial 3881  
Permanent link to this record
 

 
Author Jelena Gorbova; Egils Avots; Iiris Lusi; Mark Fishel; Sergio Escalera; Gholamreza Anbarjafari edit  doi
openurl 
  Title Integrating Vision and Language for First Impression Personality Analysis Type Journal Article
  Year 2018 Publication IEEE Multimedia Abbreviated Journal (up) MULTIMEDIA  
  Volume 25 Issue 2 Pages 24 - 33  
  Keywords  
  Abstract The authors present a novel methodology for analyzing integrated audiovisual signals and language to assess a persons personality. An evaluation of their proposed multimodal method using a job candidate screening system that predicted five personality traits from a short video demonstrates the methods effectiveness.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; 602.133 Approved no  
  Call Number Admin @ si @ GAL2018 Serial 3124  
Permanent link to this record
 

 
Author Sergio Escalera; Oriol Pujol; Petia Radeva edit  doi
openurl 
  Title Traffic sign recognition system with β -correction Type Journal Article
  Year 2010 Publication Machine Vision and Applications Abbreviated Journal (up) MVA  
  Volume 21 Issue 2 Pages 99–111  
  Keywords  
  Abstract Traffic sign classification represents a classical application of multi-object recognition processing in uncontrolled adverse environments. Lack of visibility, illumination changes, and partial occlusions are just a few problems. In this paper, we introduce a novel system for multi-class classification of traffic signs based on error correcting output codes (ECOC). ECOC is based on an ensemble of binary classifiers that are trained on bi-partition of classes. We classify a wide set of traffic signs types using robust error correcting codings. Moreover, we introduce the novel β-correction decoding strategy that outperforms the state-of-the-art decoding techniques, classifying a high number of classes with great success.  
  Address  
  Corporate Author Thesis  
  Publisher Springer-Verlag Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0932-8092 ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;HUPBA Approved no  
  Call Number BCNPCL @ bcnpcl @ EPR2010a Serial 1276  
Permanent link to this record
 

 
Author Albert Clapes; Alex Pardo; Oriol Pujol; Sergio Escalera edit   pdf
url  openurl
  Title Action detection fusing multiple Kinects and a WIMU: an application to in-home assistive technology for the elderly Type Journal Article
  Year 2018 Publication Machine Vision and Applications Abbreviated Journal (up) MVAP  
  Volume 29 Issue 5 Pages 765–788  
  Keywords Multimodal activity detection; Computer vision; Inertial sensors; Dense trajectories; Dynamic time warping; Assistive technology  
  Abstract We present a vision-inertial system which combines two RGB-Depth devices together with a wearable inertial movement unit in order to detect activities of the daily living. From multi-view videos, we extract dense trajectories enriched with a histogram of normals description computed from the depth cue and bag them into multi-view codebooks. During the later classification step a multi-class support vector machine with a RBF- 2 kernel combines the descriptions at kernel level. In order to perform action detection from the videos, a sliding window approach is utilized. On the other hand, we extract accelerations, rotation angles, and jerk features from the inertial data collected by the wearable placed on the user’s dominant wrist. During gesture spotting, a dynamic time warping is applied and the aligning costs to a set of pre-selected gesture sub-classes are thresholded to determine possible detections. The outputs of the two modules are combined in a late-fusion fashion. The system is validated in a real-case scenario with elderly from an elder home. Learning-based fusion results improve the ones from the single modalities, demonstrating the success of such multimodal approach.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA; no proj Approved no  
  Call Number Admin @ si @ CPP2018 Serial 3125  
Permanent link to this record
 

 
Author Daniel Sanchez; Miguel Angel Bautista; Sergio Escalera edit  doi
openurl 
  Title HuPBA 8k+: Dataset and ECOC-GraphCut based Segmentation of Human Limbs Type Journal Article
  Year 2015 Publication Neurocomputing Abbreviated Journal (up) NEUCOM  
  Volume 150 Issue A Pages 173–188  
  Keywords Human limb segmentation; ECOC; Graph-Cuts  
  Abstract Human multi-limb segmentation in RGB images has attracted a lot of interest in the research community because of the huge amount of possible applications in fields like Human-Computer Interaction, Surveillance, eHealth, or Gaming. Nevertheless, human multi-limb segmentation is a very hard task because of the changes in appearance produced by different points of view, clothing, lighting conditions, occlusions, and number of articulations of the human body. Furthermore, this huge pose variability makes the availability of large annotated datasets difficult. In this paper, we introduce the HuPBA8k+ dataset. The dataset contains more than 8000 labeled frames at pixel precision, including more than 120000 manually labeled samples of 14 different limbs. For completeness, the dataset is also labeled at frame-level with action annotations drawn from an 11 action dictionary which includes both single person actions and person-person interactive actions. Furthermore, we also propose a two-stage approach for the segmentation of human limbs. In a first stage, human limbs are trained using cascades of classifiers to be split in a tree-structure way, which is included in an Error-Correcting Output Codes (ECOC) framework to define a body-like probability map. This map is used to obtain a binary mask of the subject by means of GMM color modelling and GraphCuts theory. In a second stage, we embed a similar tree-structure in an ECOC framework to build a more accurate set of limb-like probability maps within the segmented user mask, that are fed to a multi-label GraphCut procedure to obtain final multi-limb segmentation. The methodology is tested on the novel HuPBA8k+ dataset, showing performance improvements in comparison to state-of-the-art approaches. In addition, a baseline of standard action recognition methods for the 11 actions categories of the novel dataset is also provided.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HuPBA;MILAB Approved no  
  Call Number Admin @ si @ SBE2015 Serial 2552  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: