toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Razieh Rastgoo; Kourosh Kiani; Sergio Escalera edit  url
openurl 
  Title A deep co-attentive hand-based video question answering framework using multi-view skeleton Type Journal Article
  Year 2023 Publication Multimedia Tools and Applications Abbreviated Journal MTAP  
  Volume 82 Issue Pages 1401–1429  
  Keywords  
  Abstract In this paper, we present a novel hand –based Video Question Answering framework, entitled Multi-View Video Question Answering (MV-VQA), employing the Single Shot Detector (SSD), Convolutional Neural Network (CNN), Long Short-Term Memory (LSTM), Bidirectional Encoder Representations from Transformers (BERT), and Co-Attention mechanism with RGB videos as the inputs. Our model includes three main blocks: vision, language, and attention. In the vision block, we employ a novel representation to obtain some efficient multiview features from the hand object using the combination of five 3DCNNs and one LSTM network. To obtain the question embedding, we use the BERT model in language block. Finally, we employ a co-attention mechanism on vision and language features to recognize the final answer. For the first time, we propose such a hand-based Video-QA framework including the multi-view hand skeleton features combined with the question embedding and co-attention mechanism. Our framework is capable of processing the arbitrary numbers of questions in the dataset annotations. There are different application domains for this framework. Here, as an application domain, we applied our framework to dynamic hand gesture recognition for the first time. Since the main object in dynamic hand gesture recognition is the human hand, we performed a step-by-step analysis of the hand detection and multi-view hand skeleton impact on the model performance. Evaluation results on five datasets, including two datasets in VideoQA, two datasets in dynamic hand gesture, and one dataset in hand action recognition show that MV-VQA outperforms state-of-the-art alternatives.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes HUPBA;MILAB Approved no  
  Call Number Admin @ si @ RKE2023b Serial 3881  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: