toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author David Aldavert; Marçal Rusiñol; Ricardo Toledo; Josep Llados edit  doi
openurl 
  Title A Study of Bag-of-Visual-Words Representations for Handwritten Keyword Spotting Type Journal Article
  Year (up) 2015 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 18 Issue 3 Pages 223-234  
  Keywords Bag-of-Visual-Words; Keyword spotting; Handwritten documents; Performance evaluation  
  Abstract The Bag-of-Visual-Words (BoVW) framework has gained popularity among the document image analysis community, specifically as a representation of handwritten words for recognition or spotting purposes. Although in the computer vision field the BoVW method has been greatly improved, most of the approaches in the document image analysis domain still rely on the basic implementation of the BoVW method disregarding such latest refinements. In this paper, we present a review of those improvements and its application to the keyword spotting task. We thoroughly evaluate their impact against a baseline system in the well-known George Washington dataset and compare the obtained results against nine state-of-the-art keyword spotting methods. In addition, we also compare both the baseline and improved systems with the methods presented at the Handwritten Keyword Spotting Competition 2014.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.055; 600.061; 601.223; 600.077; 600.097 Approved no  
  Call Number Admin @ si @ ART2015 Serial 2679  
Permanent link to this record
 

 
Author J. Chazalon; Marçal Rusiñol; Jean-Marc Ogier edit  doi
openurl 
  Title Improving Document Matching Performance by Local Descriptor Filtering Type Conference Article
  Year (up) 2015 Publication 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015 Abbreviated Journal  
  Volume Issue Pages 1216 - 1220  
  Keywords  
  Abstract In this paper we propose an effective method aimed at reducing the amount of local descriptors to be indexed in a document matching framework. In an off-line training stage, the matching between the model document and incoming images is computed retaining the local descriptors from the model that steadily produce good matches. We have evaluated this approach by using the ICDAR2015 SmartDOC dataset containing near 25 000 images from documents to be captured by a mobile device. We have tested the performance of this filtering step by using
ORB and SIFT local detectors and descriptors. The results show an important gain both in quality of the final matching as well as in time and space requirements.
 
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CBDAR  
  Notes DAG; 600.077; 601.223; 600.084 Approved no  
  Call Number Admin @ si @ CRO2015a Serial 2680  
Permanent link to this record
 

 
Author Jean-Christophe Burie; J. Chazalon; M. Coustaty; S. Eskenazi; Muhammad Muzzamil Luqman; M. Mehri; Nibal Nayef; Jean-Marc Ogier; S. Prum; Marçal Rusiñol edit  url
doi  openurl
  Title ICDAR2015 Competition on Smartphone Document Capture and OCR (SmartDoc) Type Conference Article
  Year (up) 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 1161 - 1165  
  Keywords  
  Abstract Smartphones are enabling new ways of capture,
hence arises the need for seamless and reliable acquisition and
digitization of documents, in order to convert them to editable,
searchable and a more human-readable format. Current stateof-the-art
works lack databases and baseline benchmarks for
digitizing mobile captured documents. We have organized a
competition for mobile document capture and OCR in order to
address this issue. The competition is structured into two independent
challenges: smartphone document capture, and smartphone
OCR. This report describes the datasets for both challenges
along with their ground truth, details the performance evaluation
protocols which we used, and presents the final results of the
participating methods. In total, we received 13 submissions: 8
for challenge-I, and 5 for challenge-2.
 
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 601.223; 600.084 Approved no  
  Call Number Admin @ si @ BCC2015 Serial 2681  
Permanent link to this record
 

 
Author Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados edit   pdf
doi  openurl
  Title Towards Query-by-Speech Handwritten Keyword Spotting Type Conference Article
  Year (up) 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 501-505  
  Keywords  
  Abstract In this paper, we present a new querying paradigm for handwritten keyword spotting. We propose to represent handwritten word images both by visual and audio representations, enabling a query-by-speech keyword spotting system. The two representations are merged together and projected to a common sub-space in the training phase. This transform allows to, given a spoken query, retrieve word instances that were only represented by the visual modality. In addition, the same method can be used backwards at no additional cost to produce a handwritten text-tospeech system. We present our first results on this new querying mechanism using synthetic voices over the George Washington
dataset.
 
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.084; 600.061; 601.223; 600.077;ADAS Approved no  
  Call Number Admin @ si @ RAT2015b Serial 2682  
Permanent link to this record
 

 
Author Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados; R.Jain; D.Doermann edit  url
doi  openurl
  Title Novel Line Verification for Multiple Instance Focused Retrieval in Document Collections Type Conference Article
  Year (up) 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 481-485  
  Keywords  
  Abstract  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 601.223; 600.084; 600.061 Approved no  
  Call Number Admin @ si @ GRK2015 Serial 2683  
Permanent link to this record
 

 
Author Marçal Rusiñol; J. Chazalon; Jean-Marc Ogier; Josep Llados edit   pdf
doi  openurl
  Title A Comparative Study of Local Detectors and Descriptors for Mobile Document Classification Type Conference Article
  Year (up) 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 596-600  
  Keywords  
  Abstract In this paper we conduct a comparative study of local key-point detectors and local descriptors for the specific task of mobile document classification. A classification architecture based on direct matching of local descriptors is used as baseline for the comparative study. A set of four different key-point
detectors and four different local descriptors are tested in all the possible combinations. The experiments are conducted in a database consisting of 30 model documents acquired on 6 different backgrounds, totaling more than 36.000 test images.
 
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.084; 600.61; 601.223; 600.077 Approved no  
  Call Number Admin @ si @ RCO2015 Serial 2684  
Permanent link to this record
 

 
Author J. Chazalon; Marçal Rusiñol; Jean-Marc Ogier; Josep Llados edit  url
doi  openurl
  Title A Semi-Automatic Groundtruthing Tool for Mobile-Captured Document Segmentation Type Conference Article
  Year (up) 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 621-625  
  Keywords  
  Abstract This paper presents a novel way to generate groundtruth data for the evaluation of mobile document capture systems, focusing on the first stage of the image processing pipeline involved: document object detection and segmentation in lowquality preview frames. We introduce and describe a simple, robust and fast technique based on color markers which enables a semi-automated annotation of page corners. We also detail a technique for marker removal. Methods and tools presented in the paper were successfully used to annotate, in few hours, 24889
frames in 150 video files for the smartDOC competition at ICDAR 2015
 
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.084; 600.061; 601.223; 600.077 Approved no  
  Call Number Admin @ si @ CRO2015b Serial 2685  
Permanent link to this record
 

 
Author Dimosthenis Karatzas; Lluis Gomez; Anguelos Nicolaou; Suman Ghosh; Andrew Bagdanov; Masakazu Iwamura; J. Matas; L. Neumann; V. Ramaseshan; S. Lu ; Faisal Shafait; Seiichi Uchida; Ernest Valveny edit  doi
openurl 
  Title ICDAR 2015 Competition on Robust Reading Type Conference Article
  Year (up) 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 1156-1160  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 600.084 Approved no  
  Call Number Admin @ si @ KGN2015 Serial 2690  
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Object Proposals for Text Extraction in the Wild Type Conference Article
  Year (up) 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 206 - 210  
  Keywords  
  Abstract Object Proposals is a recent computer vision technique receiving increasing interest from the research community. Its main objective is to generate a relatively small set of bounding box proposals that are most likely to contain objects of interest. The use of Object Proposals techniques in the scene text understanding field is innovative. Motivated by the success of powerful while expensive techniques to recognize words in a holistic way, Object Proposals techniques emerge as an alternative to the traditional text detectors. In this paper we study to what extent the existing generic Object Proposals methods may be useful for scene text understanding. Also, we propose a new Object Proposals algorithm that is specifically designed for text and compare it with other generic methods in the state of the art. Experiments show that our proposal is superior in its ability of producing good quality word proposals in an efficient way. The source code of our method is made publicly available  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 600.084; 601.197 Approved no  
  Call Number Admin @ si @ GoK2015 Serial 2691  
Permanent link to this record
 

 
Author Anguelos Nicolaou; Andrew Bagdanov; Marcus Liwicki; Dimosthenis Karatzas edit   pdf
url  openurl
  Title Sparse Radial Sampling LBP for Writer Identification Type Conference Article
  Year (up) 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 716-720  
  Keywords  
  Abstract In this paper we present the use of Sparse Radial Sampling Local Binary Patterns, a variant of Local Binary Patterns (LBP) for text-as-texture classification. By adapting and extending the standard LBP operator to the particularities of text we get a generic text-as-texture classification scheme and apply it to writer identification. In experiments on CVL and ICDAR 2013 datasets, the proposed feature-set demonstrates State-Of-the-Art (SOA) performance. Among the SOA, the proposed method is the only one that is based on dense extraction of a single local feature descriptor. This makes it fast and applicable at the earliest stages in a DIA pipeline without the need for segmentation, binarization, or extraction of multiple features.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ NBL2015 Serial 2692  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: