|
Records |
Links |
|
Author |
Marçal Rusiñol; Agnes Borras; Josep Llados |
|
|
Title |
Relational Indexing of Vectorial Primitives for Symbol Spotting in Line-Drawing Images |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
31 |
Issue |
3 |
Pages |
188–201 |
|
|
Keywords |
Document image analysis and recognition, Graphics recognition, Symbol spotting ,Vectorial representations, Line-drawings |
|
|
Abstract |
This paper presents a symbol spotting approach for indexing by content a database of line-drawing images. As line-drawings are digital-born documents designed by vectorial softwares, instead of using a pixel-based approach, we present a spotting method based on vector primitives. Graphical symbols are represented by a set of vectorial primitives which are described by an off-the-shelf shape descriptor. A relational indexing strategy aims to retrieve symbol locations into the target documents by using a combined numerical-relational description of 2D structures. The zones which are likely to contain the queried symbol are validated by a Hough-like voting scheme. In addition, a performance evaluation framework for symbol spotting in graphical documents is proposed. The presented methodology has been evaluated with a benchmarking set of architectural documents achieving good performance results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RBL2010 |
Serial |
1177 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Josep Llados; Gemma Sanchez; Dimosthenis Karatzas |
|
|
Title |
Rotation Invariant Hand-Drawn Symbol Recognition based on a Dynamic Time Warping Model |
Type |
Journal Article |
|
Year |
2010 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
13 |
Issue |
3 |
Pages |
229–241 |
|
|
Keywords |
|
|
|
Abstract |
One of the major difficulties of handwriting symbol recognition is the high variability among symbols because of the different writer styles. In this paper, we introduce a robust approach for describing and recognizing hand-drawn symbols tolerant to these writer style differences. This method, which is invariant to scale and rotation, is based on the dynamic time warping (DTW) algorithm. The symbols are described by vector sequences, a variation of the DTW distance is used for computing the matching distance, and K-Nearest Neighbor is used to classify them. Our approach has been evaluated in two benchmarking scenarios consisting of hand-drawn symbols. Compared with state-of-the-art methods for symbol recognition, our method shows higher tolerance to the irregular deformations induced by hand-drawn strokes. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Verlag |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; IF 2009: 1,213 |
Approved |
no |
|
|
Call Number |
DAG @ dag @ FLS2010a |
Serial |
1288 |
|
Permanent link to this record |
|
|
|
|
Author |
Mathieu Nicolas Delalandre; Ernest Valveny; Tony Pridmore; Dimosthenis Karatzas |
|
|
Title |
Generation of Synthetic Documents for Performance Evaluation of Symbol Recognition & Spotting Systems |
Type |
Journal Article |
|
Year |
2010 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
13 |
Issue |
3 |
Pages |
187-207 |
|
|
Keywords |
|
|
|
Abstract |
This paper deals with the topic of performance evaluation of symbol recognition & spotting systems. We propose here a new approach to the generation of synthetic graphics documents containing non-isolated symbols in a real context. This approach is based on the definition of a set of constraints that permit us to place the symbols on a pre-defined background according to the properties of a particular domain (architecture, electronics, engineering, etc.). In this way, we can obtain a large amount of images resembling real documents by simply defining the set of constraints and providing a few pre-defined backgrounds. As documents are synthetically generated, the groundtruth (the location and the label of every symbol) becomes automatically available. We have applied this approach to the generation of a large database of architectural drawings and electronic diagrams, which shows the flexibility of the system. Performance evaluation experiments of a symbol localization system show that our approach permits to generate documents with different features that are reflected in variation of localization results. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Verlag |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ DVP2010 |
Serial |
1289 |
|
Permanent link to this record |
|
|
|
|
Author |
Jose Antonio Rodriguez; Florent Perronnin; Gemma Sanchez; Josep Llados |
|
|
Title |
Unsupervised writer adaptation of whole-word HMMs with application to word-spotting |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
31 |
Issue |
8 |
Pages |
742–749 |
|
|
Keywords |
Word-spotting; Handwriting recognition; Writer adaptation; Hidden Markov model; Document analysis |
|
|
Abstract |
In this paper we propose a novel approach for writer adaptation in a handwritten word-spotting task. The method exploits the fact that the semi-continuous hidden Markov model separates the word model parameters into (i) a codebook of shapes and (ii) a set of word-specific parameters.
Our main contribution is to employ this property to derive writer-specific word models by statistically adapting an initial universal codebook to each document. This process is unsupervised and does not even require the appearance of the keyword(s) in the searched document. Experimental results show an increase in performance when this adaptation technique is applied. To the best of our knowledge, this is the first work dealing with adaptation for word-spotting. The preliminary version of this paper obtained an IBM Best Student Paper Award at the 19th International Conference on Pattern Recognition. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RPS2010 |
Serial |
1290 |
|
Permanent link to this record |
|
|
|
|
Author |
Partha Pratim Roy; Umapada Pal; Josep Llados |
|
|
Title |
Seal Object Detection in Document Images using GHT of Local Component Shapes |
Type |
Conference Article |
|
Year |
2010 |
Publication |
10th ACM Symposium On Applied Computing |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
23–27 |
|
|
Keywords |
|
|
|
Abstract |
Due to noise, overlapped text/signature and multi-oriented nature, seal (stamp) object detection involves a difficult challenge. This paper deals with automatic detection of seal from documents with cluttered background. Here, a seal object is characterized by scale and rotation invariant spatial feature descriptors (distance and angular position) computed from recognition result of individual connected components (characters). Recognition of multi-scale and multi-oriented component is done using Support Vector Machine classifier. Generalized Hough Transform (GHT) is used to detect the seal and a voting is casted for finding possible location of the seal object in a document based on these spatial feature descriptor of components pairs. The peak of votes in GHT accumulator validates the hypothesis to locate the seal object in a document. Experimental results show that, the method is efficient to locate seal instance of arbitrary shape and orientation in documents. |
|
|
Address |
Sierre, Switzerland |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
SAC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RPL2010a |
Serial |
1291 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Josep Llados |
|
|
Title |
Symbol Spotting in Digital Libraries:Focused Retrieval over Graphic-rich Document Collections |
Type |
Book Whole |
|
Year |
2010 |
Publication |
Symbol Spotting in Digital Libraries:Focused Retrieval over Graphic-rich Document Collections |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Focused Retrieval , Graphical Pattern Indexation,Graphics Recognition ,Pattern Recognition , Performance Evaluation , Symbol Description ,Symbol Spotting |
|
|
Abstract |
The specific problem of symbol recognition in graphical documents requires additional techniques to those developed for character recognition. The most well-known obstacle is the so-called Sayre paradox: Correct recognition requires good segmentation, yet improvement in segmentation is achieved using information provided by the recognition process. This dilemma can be avoided by techniques that identify sets of regions containing useful information. Such symbol-spotting methods allow the detection of symbols in maps or technical drawings without having to fully segment or fully recognize the entire content.
This unique text/reference provides a complete, integrated and large-scale solution to the challenge of designing a robust symbol-spotting method for collections of graphic-rich documents. The book examines a number of features and descriptors, from basic photometric descriptors commonly used in computer vision techniques to those specific to graphical shapes, presenting a methodology which can be used in a wide variety of applications. Additionally, readers are supplied with an insight into the problem of performance evaluation of spotting methods. Some very basic knowledge of pattern recognition, document image analysis and graphics recognition is assumed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-84996-208-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RuL2010a |
Serial |
1292 |
|
Permanent link to this record |
|
|
|
|
Author |
Muhammad Muzzamil Luqman; Thierry Brouard; Jean-Yves Ramel; Josep Llados |
|
|
Title |
Vers une approche foue of encapsulation de graphes: application a la reconnaissance de symboles |
Type |
Conference Article |
|
Year |
2010 |
Publication |
Colloque International Francophone sur l'Écrit et le Document |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
169-184 |
|
|
Keywords |
Fuzzy interval; Graph embedding; Bayesian network; Symbol recognition |
|
|
Abstract |
We present a new methodology for symbol recognition, by employing a structural approach for representing visual associations in symbols and a statistical classifier for recognition. A graphic symbol is vectorized, its topological and geometrical details are encoded by an attributed relational graph and a signature is computed for it. Data adapted fuzzy intervals have been introduced for addressing the sensitivity of structural representations to noise. The joint probability distribution of signatures is encoded by a Bayesian network, which serves as a mechanism for pruning irrelevant features and choosing a subset of interesting features from structural signatures of underlying symbol set, and is deployed in a supervised learning scenario for recognizing query symbols. Experimental results on pre-segmented 2D linear architectural and electronic symbols from GREC databases are presented. |
|
|
Address |
Sousse, Tunisia |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CIFED |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ LBR2010a |
Serial |
1293 |
|
Permanent link to this record |
|
|
|
|
Author |
Miquel Ferrer; Ernest Valveny; F. Serratosa; K. Riesen; Horst Bunke |
|
|
Title |
Generalized Median Graph Computation by Means of Graph Embedding in Vector Spaces |
Type |
Journal Article |
|
Year |
2010 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
43 |
Issue |
4 |
Pages |
1642–1655 |
|
|
Keywords |
Graph matching; Weighted mean of graphs; Median graph; Graph embedding; Vector spaces |
|
|
Abstract |
The median graph has been presented as a useful tool to represent a set of graphs. Nevertheless its computation is very complex and the existing algorithms are restricted to use limited amount of data. In this paper we propose a new approach for the computation of the median graph based on graph embedding. Graphs are embedded into a vector space and the median is computed in the vector domain. We have designed a procedure based on the weighted mean of a pair of graphs to go from the vector domain back to the graph domain in order to obtain a final approximation of the median graph. Experiments on three different databases containing large graphs show that we succeed to compute good approximations of the median graph. We have also applied the median graph to perform some basic classification tasks achieving reasonable good results. These experiments on real data open the door to the application of the median graph to a number of more complex machine learning algorithms where a representative of a set of graphs is needed. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ FVS2010 |
Serial |
1294 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Josep Llados; Gemma Sanchez; Xavier Otazu; Horst Bunke |
|
|
Title |
A Combination of Features for Symbol-Independent Writer Identification in Old Music Scores |
Type |
Journal Article |
|
Year |
2010 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
13 |
Issue |
4 |
Pages |
243-259 |
|
|
Keywords |
|
|
|
Abstract |
The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper, we present an architecture for writer identification in old handwritten music scores. Even though an important amount of music compositions contain handwritten text, the aim of our work is to use only music notation to determine the author. The main contribution is therefore the use of features extracted from graphical alphabets. Our proposal consists in combining the identification results of two different approaches, based on line and textural features. The steps of the ensemble architecture are the following. First of all, the music sheet is preprocessed for removing the staff lines. Then, music lines and texture images are generated for computing line features and textural features. Finally, the classification results are combined for identifying the writer. The proposed method has been tested on a database of old music scores from the seventeenth to nineteenth centuries, achieving a recognition rate of about 92% with 20 writers. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer-Verlag |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; CAT;CIC |
Approved |
no |
|
|
Call Number |
FLS2010b |
Serial |
1319 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Gordo; Alicia Fornes; Ernest Valveny; Josep Llados |
|
|
Title |
A Bag of Notes Approach to Writer Identification in Old Handwritten Music Scores |
Type |
Conference Article |
|
Year |
2010 |
Publication |
9th IAPR International Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
247–254 |
|
|
Keywords |
|
|
|
Abstract |
Determining the authorship of a document, namely writer identification, can be an important source of information for document categorization. Contrary to text documents, the identification of the writer of graphical documents is still a challenge. In this paper we present a robust approach for writer identification in a particular kind of graphical documents, old music scores. This approach adapts the bag of visual terms method for coping with graphic documents. The identification is performed only using the graphical music notation. For this purpose, we generate a graphic vocabulary without recognizing any music symbols, and consequently, avoiding the difficulties in the recognition of hand-drawn symbols in old and degraded documents. The proposed method has been tested on a database of old music scores from the 17th to 19th centuries, achieving very high identification rates. |
|
|
Address |
Boston; USA; |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-60558-773-8 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ GFV2010 |
Serial |
1320 |
|
Permanent link to this record |