|
Records |
Links |
|
Author |
Josep Llados; Daniel Lopresti; Seiichi Uchida (eds) |


|
|
Title |
16th International Conference, 2021, Proceedings, Part IV |
Type |
Book Whole |
|
Year  |
2021 |
Publication |
Document Analysis and Recognition – ICDAR 2021 |
Abbreviated Journal |
|
|
|
Volume |
12824 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This four-volume set of LNCS 12821, LNCS 12822, LNCS 12823 and LNCS 12824, constitutes the refereed proceedings of the 16th International Conference on Document Analysis and Recognition, ICDAR 2021, held in Lausanne, Switzerland in September 2021. The 182 full papers were carefully reviewed and selected from 340 submissions, and are presented with 13 competition reports.
The papers are organized into the following topical sections: document analysis for literature search, document summarization and translation, multimedia document analysis, mobile text recognition, document analysis for social good, indexing and retrieval of documents, physical and logical layout analysis, recognition of tables and formulas, and natural language processing (NLP) for document understanding. |
|
|
Address |
Lausanne, Switzerland, September 5-10, 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Cham |
Place of Publication |
|
Editor |
Josep Llados; Daniel Lopresti; Seiichi Uchida |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-030-86336-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ |
Serial |
3728 |
|
Permanent link to this record |
|
|
|
|
Author |
Lei Kang; Pau Riba; Marcal Rusinol; Alicia Fornes; Mauricio Villegas |


|
|
Title |
Content and Style Aware Generation of Text-line Images for Handwriting Recognition |
Type |
Journal Article |
|
Year  |
2021 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Handwritten Text Recognition has achieved an impressive performance in public benchmarks. However, due to the high inter- and intra-class variability between handwriting styles, such recognizers need to be trained using huge volumes of manually labeled training data. To alleviate this labor-consuming problem, synthetic data produced with TrueType fonts has been often used in the training loop to gain volume and augment the handwriting style variability. However, there is a significant style bias between synthetic and real data which hinders the improvement of recognition performance. To deal with such limitations, we propose a generative method for handwritten text-line images, which is conditioned on both visual appearance and textual content. Our method is able to produce long text-line samples with diverse handwriting styles. Once properly trained, our method can also be adapted to new target data by only accessing unlabeled text-line images to mimic handwritten styles and produce images with any textual content. Extensive experiments have been done on making use of the generated samples to boost Handwritten Text Recognition performance. Both qualitative and quantitative results demonstrate that the proposed approach outperforms the current state of the art. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRR2021 |
Serial |
3612 |
|
Permanent link to this record |
|
|
|
|
Author |
Lei Kang; Pau Riba; Mauricio Villegas; Alicia Fornes; Marçal Rusiñol |


|
|
Title |
Candidate Fusion: Integrating Language Modelling into a Sequence-to-Sequence Handwritten Word Recognition Architecture |
Type |
Journal Article |
|
Year  |
2021 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
112 |
Issue |
|
Pages |
107790 |
|
|
Keywords |
|
|
|
Abstract |
Sequence-to-sequence models have recently become very popular for tackling
handwritten word recognition problems. However, how to effectively integrate an external language model into such recognizer is still a challenging
problem. The main challenge faced when training a language model is to
deal with the language model corpus which is usually different to the one
used for training the handwritten word recognition system. Thus, the bias
between both word corpora leads to incorrectness on the transcriptions, providing similar or even worse performances on the recognition task. In this
work, we introduce Candidate Fusion, a novel way to integrate an external
language model to a sequence-to-sequence architecture. Moreover, it provides suggestions from an external language knowledge, as a new input to
the sequence-to-sequence recognizer. Hence, Candidate Fusion provides two
improvements. On the one hand, the sequence-to-sequence recognizer has
the flexibility not only to combine the information from itself and the language model, but also to choose the importance of the information provided
by the language model. On the other hand, the external language model
has the ability to adapt itself to the training corpus and even learn the
most commonly errors produced from the recognizer. Finally, by conducting
comprehensive experiments, the Candidate Fusion proves to outperform the
state-of-the-art language models for handwritten word recognition tasks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 601.302; 601.312; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ KRV2021 |
Serial |
3343 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Ali Furkan Biten; Ruben Tito; Andres Mafla; Marçal Rusiñol; Ernest Valveny; Dimosthenis Karatzas |


|
|
Title |
Multimodal grid features and cell pointers for scene text visual question answering |
Type |
Journal Article |
|
Year  |
2021 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
150 |
Issue |
|
Pages |
242-249 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a new model for the task of scene text visual question answering. In this task questions about a given image can only be answered by reading and understanding scene text. Current state of the art models for this task make use of a dual attention mechanism in which one attention module attends to visual features while the other attends to textual features. A possible issue with this is that it makes difficult for the model to reason jointly about both modalities. To fix this problem we propose a new model that is based on an single attention mechanism that attends to multi-modal features conditioned to the question. The output weights of this attention module over a grid of multi-modal spatial features are interpreted as the probability that a certain spatial location of the image contains the answer text to the given question. Our experiments demonstrate competitive performance in two standard datasets with a model that is faster than previous methods at inference time. Furthermore, we also provide a novel analysis of the ST-VQA dataset based on a human performance study. Supplementary material, code, and data is made available through this link. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GBT2021 |
Serial |
3620 |
|
Permanent link to this record |
|
|
|
|
Author |
Minesh Mathew; Dimosthenis Karatzas; C.V. Jawahar |

|
|
Title |
DocVQA: A Dataset for VQA on Document Images |
Type |
Conference Article |
|
Year  |
2021 |
Publication |
IEEE Winter Conference on Applications of Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
2200-2209 |
|
|
Keywords |
|
|
|
Abstract |
We present a new dataset for Visual Question Answering (VQA) on document images called DocVQA. The dataset consists of 50,000 questions defined on 12,000+ document images. Detailed analysis of the dataset in comparison with similar datasets for VQA and reading comprehension is presented. We report several baseline results by adopting existing VQA and reading comprehension models. Although the existing models perform reasonably well on certain types of questions, there is large performance gap compared to human performance (94.36% accuracy). The models need to improve specifically on questions where understanding structure of the document is crucial. The dataset, code and leaderboard are available at docvqa. org |
|
|
Address |
Virtual; January 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WACV |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MKJ2021 |
Serial |
3498 |
|
Permanent link to this record |
|
|
|
|
Author |
Minesh Mathew; Lluis Gomez; Dimosthenis Karatzas; C.V. Jawahar |


|
|
Title |
Asking questions on handwritten document collections |
Type |
Journal Article |
|
Year  |
2021 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
24 |
Issue |
|
Pages |
235-249 |
|
|
Keywords |
|
|
|
Abstract |
This work addresses the problem of Question Answering (QA) on handwritten document collections. Unlike typical QA and Visual Question Answering (VQA) formulations where the answer is a short text, we aim to locate a document snippet where the answer lies. The proposed approach works without recognizing the text in the documents. We argue that the recognition-free approach is suitable for handwritten documents and historical collections where robust text recognition is often difficult. At the same time, for human users, document image snippets containing answers act as a valid alternative to textual answers. The proposed approach uses an off-the-shelf deep embedding network which can project both textual words and word images into a common sub-space. This embedding bridges the textual and visual domains and helps us retrieve document snippets that potentially answer a question. We evaluate results of the proposed approach on two new datasets: (i) HW-SQuAD: a synthetic, handwritten document image counterpart of SQuAD1.0 dataset and (ii) BenthamQA: a smaller set of QA pairs defined on documents from the popular Bentham manuscripts collection. We also present a thorough analysis of the proposed recognition-free approach compared to a recognition-based approach which uses text recognized from the images using an OCR. Datasets presented in this work are available to download at docvqa.org. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MGK2021 |
Serial |
3621 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohamed Ali Souibgui; Alicia Fornes; Y.Kessentini; C.Tudor |


|
|
Title |
A Few-shot Learning Approach for Historical Encoded Manuscript Recognition |
Type |
Conference Article |
|
Year  |
2021 |
Publication |
25th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
5413-5420 |
|
|
Keywords |
|
|
|
Abstract |
Encoded (or ciphered) manuscripts are a special type of historical documents that contain encrypted text. The automatic recognition of this kind of documents is challenging because: 1) the cipher alphabet changes from one document to another, 2) there is a lack of annotated corpus for training and 3) touching symbols make the symbol segmentation difficult and complex. To overcome these difficulties, we propose a novel method for handwritten ciphers recognition based on few-shot object detection. Our method first detects all symbols of a given alphabet in a line image, and then a decoding step maps the symbol similarity scores to the final sequence of transcribed symbols. By training on synthetic data, we show that the proposed architecture is able to recognize handwritten ciphers with unseen alphabets. In addition, if few labeled pages with the same alphabet are used for fine tuning, our method surpasses existing unsupervised and supervised HTR methods for ciphers recognition. |
|
|
Address |
Virtual; January 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.121; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SFK2021 |
Serial |
3449 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Adria Molina; Lluis Gomez; Oriol Ramos Terrades; Josep Llados |


|
|
Title |
Learning to Rank Words: Optimizing Ranking Metrics for Word Spotting |
Type |
Conference Article |
|
Year  |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12822 |
Issue |
|
Pages |
381–395 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we explore and evaluate the use of ranking-based objective functions for learning simultaneously a word string and a word image encoder. We consider retrieval frameworks in which the user expects a retrieval list ranked according to a defined relevance score. In the context of a word spotting problem, the relevance score has been set according to the string edit distance from the query string. We experimentally demonstrate the competitive performance of the proposed model on query-by-string word spotting for both, handwritten and real scene word images. We also provide the results for query-by-example word spotting, although it is not the main focus of this work. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RMG2021 |
Serial |
3572 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Andreas Fischer; Josep Llados; Alicia Fornes |


|
|
Title |
Learning graph edit distance by graph neural networks |
Type |
Journal Article |
|
Year  |
2021 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
120 |
Issue |
|
Pages |
108132 |
|
|
Keywords |
|
|
|
Abstract |
The emergence of geometric deep learning as a novel framework to deal with graph-based representations has faded away traditional approaches in favor of completely new methodologies. In this paper, we propose a new framework able to combine the advances on deep metric learning with traditional approximations of the graph edit distance. Hence, we propose an efficient graph distance based on the novel field of geometric deep learning. Our method employs a message passing neural network to capture the graph structure, and thus, leveraging this information for its use on a distance computation. The performance of the proposed graph distance is validated on two different scenarios. On the one hand, in a graph retrieval of handwritten words i.e. keyword spotting, showing its superior performance when compared with (approximate) graph edit distance benchmarks. On the other hand, demonstrating competitive results for graph similarity learning when compared with the current state-of-the-art on a recent benchmark dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RFL2021 |
Serial |
3611 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Sounak Dey; Ali Furkan Biten; Josep Llados |

|
|
Title |
Localizing Infinity-shaped fishes: Sketch-guided object localization in the wild |
Type |
Miscellaneous |
|
Year  |
2021 |
Publication |
Arxiv |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This work investigates the problem of sketch-guided object localization (SGOL), where human sketches are used as queries to conduct the object localization in natural images. In this cross-modal setting, we first contribute with a tough-to-beat baseline that without any specific SGOL training is able to outperform the previous works on a fixed set of classes. The baseline is useful to analyze the performance of SGOL approaches based on available simple yet powerful methods. We advance prior arts by proposing a sketch-conditioned DETR (DEtection TRansformer) architecture which avoids a hard classification and alleviates the domain gap between sketches and images to localize object instances. Although the main goal of SGOL is focused on object detection, we explored its natural extension to sketch-guided instance segmentation. This novel task allows to move towards identifying the objects at pixel level, which is of key importance in several applications. We experimentally demonstrate that our model and its variants significantly advance over previous state-of-the-art results. All training and testing code of our model will be released to facilitate future researchhttps://github.com/priba/sgol_wild. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RDB2021 |
Serial |
3674 |
|
Permanent link to this record |