toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Klara Janousckova; Jiri Matas; Lluis Gomez; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Text Recognition – Real World Data and Where to Find Them Type Conference Article
  Year (down) 2020 Publication 25th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 4489-4496  
  Keywords  
  Abstract We present a method for exploiting weakly annotated images to improve text extraction pipelines. The approach uses an arbitrary end-to-end text recognition system to obtain text region proposals and their, possibly erroneous, transcriptions. The method includes matching of imprecise transcriptions to weak annotations and an edit distance guided neighbourhood search. It produces nearly error-free, localised instances of scene text, which we treat as “pseudo ground truth” (PGT). The method is applied to two weakly-annotated datasets. Training with the extracted PGT consistently improves the accuracy of a state of the art recognition model, by 3.7% on average, across different benchmark datasets (image domains) and 24.5% on one of the weakly annotated datasets 1 1 Acknowledgements. The authors were supported by Czech Technical University student grant SGS20/171/0HK3/3TJ13, the MEYS VVV project CZ.02.1.01/0.010.0J16 019/0000765 Research Center for Informatics, the Spanish Research project TIN2017-89779-P and the CERCA Programme / Generalitat de Catalunya.  
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ JMG2020 Serial 3557  
Permanent link to this record
 

 
Author Lei Kang edit  isbn
openurl 
  Title Robust Handwritten Text Recognition in Scarce Labeling Scenarios: Disentanglement, Adaptation and Generation Type Book Whole
  Year (down) 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Handwritten documents are not only preserved in historical archives but also widely used in administrative documents such as cheques and claims. With the rise of the deep learning era, many state-of-the-art approaches have achieved good performance on specific datasets for Handwritten Text Recognition (HTR). However, it is still challenging to solve real use cases because of the varied handwriting styles across different writers and the limited labeled data. Thus, both explorin a more robust handwriting recognition architectures and proposing methods to diminish the gap between the source and target data in an unsupervised way are
demanded.
In this thesis, firstly, we explore novel architectures for HTR, from Sequence-to-Sequence (Seq2Seq) method with attention mechanism to non-recurrent Transformer-based method. Secondly, we focus on diminishing the performance gap between source and target data in an unsupervised way. Finally, we propose a group of generative methods for handwritten text images, which could be utilized to increase the training set to obtain a more robust recognizer. In addition, by simply modifying the generative method and joining it with a recognizer, we end up with an effective disentanglement method to distill textual content from handwriting styles so as to achieve a generalized recognition performance.
We outperform state-of-the-art HTR performances in the experimental results among different scientific and industrial datasets, which prove the effectiveness of the proposed methods. To the best of our knowledge, the non-recurrent recognizer and the disentanglement method are the first contributions in the handwriting recognition field. Furthermore, we have outlined the potential research lines, which would be interesting to explore in the future.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Marçal Rusiñol;Mauricio Villegas  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-0-9 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Kan20 Serial 3482  
Permanent link to this record
 

 
Author Lei Kang; Marçal Rusiñol; Alicia Fornes; Pau Riba; Mauricio Villegas edit   pdf
url  doi
openurl 
  Title Unsupervised Adaptation for Synthetic-to-Real Handwritten Word Recognition Type Conference Article
  Year (down) 2020 Publication IEEE Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Handwritten Text Recognition (HTR) is still a challenging problem because it must deal with two important difficulties: the variability among writing styles, and the scarcity of labelled data. To alleviate such problems, synthetic data generation and data augmentation are typically used to train HTR systems. However, training with such data produces encouraging but still inaccurate transcriptions in real words. In this paper, we propose an unsupervised writer adaptation approach that is able to automatically adjust a generic handwritten word recognizer, fully trained with synthetic fonts, towards a new incoming writer. We have experimentally validated our proposal using five different datasets, covering several challenges (i) the document source: modern and historic samples, which may involve paper degradation problems; (ii) different handwriting styles: single and multiple writer collections; and (iii) language, which involves different character combinations. Across these challenging collections, we show that our system is able to maintain its performance, thus, it provides a practical and generic approach to deal with new document collections without requiring any expensive and tedious manual annotation step.  
  Address Aspen; Colorado; USA; March 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.129; 600.140; 601.302; 601.312; 600.121 Approved no  
  Call Number Admin @ si @ KRF2020 Serial 3446  
Permanent link to this record
 

 
Author Lei Kang; Pau Riba; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas edit   pdf
openurl 
  Title Distilling Content from Style for Handwritten Word Recognition Type Conference Article
  Year (down) 2020 Publication 17th International Conference on Frontiers in Handwriting Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Despite the latest transcription accuracies reached using deep neural network architectures, handwritten text recognition still remains a challenging problem, mainly because of the large inter-writer style variability. Both augmenting the training set with artificial samples using synthetic fonts, and writer adaptation techniques have been proposed to yield more generic approaches aimed at dodging style unevenness. In this work, we take a step closer to learn style independent features from handwritten word images. We propose a novel method that is able to disentangle the content and style aspects of input images by jointly optimizing a generative process and a handwritten
word recognizer. The generator is aimed at transferring writing style features from one sample to another in an image-to-image translation approach, thus leading to a learned content-centric features that shall be independent to writing style attributes.
Our proposed recognition model is able then to leverage such writer-agnostic features to reach better recognition performances. We advance over prior training strategies and demonstrate with qualitative and quantitative evaluations the performance of both
the generative process and the recognition efficiency in the IAM dataset.
 
  Address Virtual ICFHR; September 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.129; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ KRR2020a Serial 3425  
Permanent link to this record
 

 
Author Lei Kang; Pau Riba; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas edit   pdf
url  openurl
  Title Pay Attention to What You Read: Non-recurrent Handwritten Text-Line Recognition Type Miscellaneous
  Year (down) 2020 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The advent of recurrent neural networks for handwriting recognition marked an important milestone reaching impressive recognition accuracies despite the great variability that we observe across different writing styles. Sequential architectures are a perfect fit to model text lines, not only because of the inherent temporal aspect of text, but also to learn probability distributions over sequences of characters and words. However, using such recurrent paradigms comes at a cost at training stage, since their sequential pipelines prevent parallelization. In this work, we introduce a non-recurrent approach to recognize handwritten text by the use of transformer models. We propose a novel method that bypasses any recurrence. By using multi-head self-attention layers both at the visual and textual stages, we are able to tackle character recognition as well as to learn language-related dependencies of the character sequences to be decoded. Our model is unconstrained to any predefined vocabulary, being able to recognize out-of-vocabulary words, i.e. words that do not appear in the training vocabulary. We significantly advance over prior art and demonstrate that satisfactory recognition accuracies are yielded even in few-shot learning scenarios.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; Approved no  
  Call Number Admin @ si @ KRR2020b Serial 3556  
Permanent link to this record
 

 
Author Lei Kang; Pau Riba; Yaxing Wang; Marçal Rusiñol; Alicia Fornes; Mauricio Villegas edit   pdf
openurl 
  Title GANwriting: Content-Conditioned Generation of Styled Handwritten Word Images Type Conference Article
  Year (down) 2020 Publication 16th European Conference on Computer Vision Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Although current image generation methods have reached impressive quality levels, they are still unable to produce plausible yet diverse images of handwritten words. On the contrary, when writing by hand, a great variability is observed across different writers, and even when analyzing words scribbled by the same individual, involuntary variations are conspicuous. In this work, we take a step closer to producing realistic and varied artificially rendered handwritten words. We propose a novel method that is able to produce credible handwritten word images by conditioning the generative process with both calligraphic style features and textual content. Our generator is guided by three complementary learning objectives: to produce realistic images, to imitate a certain handwriting style and to convey a specific textual content. Our model is unconstrained to any predefined vocabulary, being able to render whatever input word. Given a sample writer, it is also able to mimic its calligraphic features in a few-shot setup. We significantly advance over prior art and demonstrate with qualitative, quantitative and human-based evaluations the realistic aspect of our synthetically produced images.  
  Address Virtual; August 2020  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCV  
  Notes DAG; 600.140; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ KPW2020 Serial 3426  
Permanent link to this record
 

 
Author Lluis Gomez; Anguelos Nicolaou; Marçal Rusiñol; Dimosthenis Karatzas edit  openurl
  Title 12 years of ICDAR Robust Reading Competitions: The evolution of reading systems for unconstrained text understanding Type Book Chapter
  Year (down) 2020 Publication Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor K. Alahari; C.V. Jawahar  
  Language Summary Language Original Title  
  Series Editor Series Title Series on Advances in Computer Vision and Pattern Recognition Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number GNR2020 Serial 3494  
Permanent link to this record
 

 
Author Lluis Gomez; Dena Bazazian; Dimosthenis Karatzas edit  openurl
  Title Historical review of scene text detection research Type Book Chapter
  Year (down) 2020 Publication Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor K. Alahari; C.V. Jawahar  
  Language Summary Language Original Title  
  Series Editor Series Title Series on Advances in Computer Vision and Pattern Recognition Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ GBK2020 Serial 3495  
Permanent link to this record
 

 
Author Manuel Carbonell edit  isbn
openurl 
  Title Neural Information Extraction from Semi-structured Documents A Type Book Whole
  Year (down) 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Sectors as fintech, legaltech or insurance process an inflow of millions of forms, invoices, id documents, claims or similar every day. Together with these, historical archives provide gigantic amounts of digitized documents containing useful information that needs to be stored in machine encoded text with a meaningful structure. This procedure, known as information extraction (IE) comprises the steps of localizing and recognizing text, identifying named entities contained in it and optionally finding relationships among its elements. In this work we explore multi-task neural models at image and graph level to solve all steps in a unified way. While doing so we find benefits and limitations of these end-to-end approaches in comparison with sequential separate methods. More specifically, we first propose a method to produce textual as well as semantic labels with a unified model from handwritten text line images. We do so with the use of a convolutional recurrent neural model trained with connectionist temporal classification to predict the textual as well as semantic information encoded in the images. Secondly, motivated by the success of this approach we investigate the unification of the localization and recognition tasks of handwritten text in full pages with an end-to-end model, observing benefits in doing so. Having two models that tackle information extraction subsequent task pairs in an end-to-end to end manner, we lastly contribute with a method to put them all together in a single neural network to solve the whole information extraction pipeline in a unified way. Doing so we observe some benefits and some limitations in the approach, suggesting that in certain cases it is beneficial to train specialized models that excel at a single challenging task of the information extraction process, as it can be the recognition of named entities or the extraction of relationships between them. For this reason we lastly study the use of the recently arrived graph neural network architectures for the semantic tasks of the information extraction process, which are recognition of named entities and relation extraction, achieving promising results on the relation extraction part.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Mauricio Villegas;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-1-6 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Car20 Serial 3483  
Permanent link to this record
 

 
Author Manuel Carbonell; Alicia Fornes; Mauricio Villegas; Josep Llados edit   pdf
openurl 
  Title A Neural Model for Text Localization, Transcription and Named Entity Recognition in Full Pages Type Journal Article
  Year (down) 2020 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 136 Issue Pages 219-227  
  Keywords  
  Abstract In the last years, the consolidation of deep neural network architectures for information extraction in document images has brought big improvements in the performance of each of the tasks involved in this process, consisting of text localization, transcription, and named entity recognition. However, this process is traditionally performed with separate methods for each task. In this work we propose an end-to-end model that combines a one stage object detection network with branches for the recognition of text and named entities respectively in a way that shared features can be learned simultaneously from the training error of each of the tasks. By doing so the model jointly performs handwritten text detection, transcription, and named entity recognition at page level with a single feed forward step. We exhaustively evaluate our approach on different datasets, discussing its advantages and limitations compared to sequential approaches. The results show that the model is capable of benefiting from shared features by simultaneously solving interdependent tasks.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 601.311; 600.121 Approved no  
  Call Number Admin @ si @ CFV2020 Serial 3451  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: