|
Records |
Links |
|
Author |
Nuria Cirera; Alicia Fornes; Josep Llados |
|
|
Title |
Hidden Markov model topology optimization for handwriting recognition |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
626-630 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a method to optimize the topology of linear left-to-right hidden Markov models. These models are very popular for sequential signals modeling on tasks such as handwriting recognition. Many topology definition methods select the number of states for a character model based
on character length. This can be a drawback when characters are shorter than the minimum allowed by the model, since they can not be properly trained nor recognized. The proposed method optimizes the number of states per model by automatically including convenient skip-state transitions and therefore it avoids the aforementioned problem.We discuss and compare our method with other character length-based methods such the Fixed, Bakis and Quantile methods. Our proposal performs well on off-line handwriting recognition task. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CFL2015 |
Serial |
2639 |
|
Permanent link to this record |
|
|
|
|
Author |
Juan Ignacio Toledo; Jordi Cucurull; Jordi Puiggali; Alicia Fornes; Josep Llados |
|
|
Title |
Document Analysis Techniques for Automatic Electoral Document Processing: A Survey |
Type |
Conference Article |
|
Year |
2015 |
Publication |
E-Voting and Identity, Proceedings of 5th international conference, VoteID 2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
139-141 |
|
|
Keywords |
Document image analysis; Computer vision; Paper ballots; Paper based elections; Optical scan; Tally |
|
|
Abstract |
In this paper, we will discuss the most common challenges in electoral document processing and study the different solutions from the document analysis community that can be applied in each case. We will cover Optical Mark Recognition techniques to detect voter selections in the Australian Ballot, handwritten number recognition for preferential elections and handwriting recognition for write-in areas. We will also propose some particular adjustments that can be made to those general techniques in the specific context of electoral documents. |
|
|
Address |
Bern; Switzerland; September 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
VoteID |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TCP2015 |
Serial |
2641 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes |
|
|
Title |
Handwritten Word Spotting by Inexact Matching of Grapheme Graphs |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
781 - 785 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a graph-based word spotting for handwritten documents. Contrary to most word spotting techniques, which use statistical representations, we propose a structural representation suitable to be robust to the inherent deformations of handwriting. Attributed graphs are constructed using a part-based approach. Graphemes extracted from shape convexities are used as stable units of handwriting, and are associated to graph nodes. Then, spatial relations between them determine graph edges. Spotting is defined in terms of an error-tolerant graph matching using bipartite-graph matching algorithm. To make the method usable in large datasets, a graph indexing approach that makes use of binary embeddings is used as preprocessing. Historical documents are used as experimental framework. The approach is comparable to statistical ones in terms of time and memory requirements, especially when dealing with large document collections. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 600.061; 602.006 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLF2015b |
Serial |
2642 |
|
Permanent link to this record |
|
|
|
|
Author |
J. Chazalon; Marçal Rusiñol; Jean-Marc Ogier |
|
|
Title |
Improving Document Matching Performance by Local Descriptor Filtering |
Type |
Conference Article |
|
Year |
2015 |
Publication |
6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1216 - 1220 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose an effective method aimed at reducing the amount of local descriptors to be indexed in a document matching framework. In an off-line training stage, the matching between the model document and incoming images is computed retaining the local descriptors from the model that steadily produce good matches. We have evaluated this approach by using the ICDAR2015 SmartDOC dataset containing near 25 000 images from documents to be captured by a mobile device. We have tested the performance of this filtering step by using
ORB and SIFT local detectors and descriptors. The results show an important gain both in quality of the final matching as well as in time and space requirements. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CBDAR |
|
|
Notes |
DAG; 600.077; 601.223; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CRO2015a |
Serial |
2680 |
|
Permanent link to this record |
|
|
|
|
Author |
Jean-Christophe Burie; J. Chazalon; M. Coustaty; S. Eskenazi; Muhammad Muzzamil Luqman; M. Mehri; Nibal Nayef; Jean-Marc Ogier; S. Prum; Marçal Rusiñol |
|
|
Title |
ICDAR2015 Competition on Smartphone Document Capture and OCR (SmartDoc) |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1161 - 1165 |
|
|
Keywords |
|
|
|
Abstract |
Smartphones are enabling new ways of capture,
hence arises the need for seamless and reliable acquisition and
digitization of documents, in order to convert them to editable,
searchable and a more human-readable format. Current stateof-the-art
works lack databases and baseline benchmarks for
digitizing mobile captured documents. We have organized a
competition for mobile document capture and OCR in order to
address this issue. The competition is structured into two independent
challenges: smartphone document capture, and smartphone
OCR. This report describes the datasets for both challenges
along with their ground truth, details the performance evaluation
protocols which we used, and presents the final results of the
participating methods. In total, we received 13 submissions: 8
for challenge-I, and 5 for challenge-2. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 601.223; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BCC2015 |
Serial |
2681 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados |
|
|
Title |
Towards Query-by-Speech Handwritten Keyword Spotting |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
501-505 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we present a new querying paradigm for handwritten keyword spotting. We propose to represent handwritten word images both by visual and audio representations, enabling a query-by-speech keyword spotting system. The two representations are merged together and projected to a common sub-space in the training phase. This transform allows to, given a spoken query, retrieve word instances that were only represented by the visual modality. In addition, the same method can be used backwards at no additional cost to produce a handwritten text-tospeech system. We present our first results on this new querying mechanism using synthetic voices over the George Washington
dataset. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.084; 600.061; 601.223; 600.077;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RAT2015b |
Serial |
2682 |
|
Permanent link to this record |
|
|
|
|
Author |
Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados; R.Jain; D.Doermann |
|
|
Title |
Novel Line Verification for Multiple Instance Focused Retrieval in Document Collections |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
481-485 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 601.223; 600.084; 600.061 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GRK2015 |
Serial |
2683 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; J. Chazalon; Jean-Marc Ogier; Josep Llados |
|
|
Title |
A Comparative Study of Local Detectors and Descriptors for Mobile Document Classification |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
596-600 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we conduct a comparative study of local key-point detectors and local descriptors for the specific task of mobile document classification. A classification architecture based on direct matching of local descriptors is used as baseline for the comparative study. A set of four different key-point
detectors and four different local descriptors are tested in all the possible combinations. The experiments are conducted in a database consisting of 30 model documents acquired on 6 different backgrounds, totaling more than 36.000 test images. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.084; 600.61; 601.223; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RCO2015 |
Serial |
2684 |
|
Permanent link to this record |
|
|
|
|
Author |
J. Chazalon; Marçal Rusiñol; Jean-Marc Ogier; Josep Llados |
|
|
Title |
A Semi-Automatic Groundtruthing Tool for Mobile-Captured Document Segmentation |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
621-625 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a novel way to generate groundtruth data for the evaluation of mobile document capture systems, focusing on the first stage of the image processing pipeline involved: document object detection and segmentation in lowquality preview frames. We introduce and describe a simple, robust and fast technique based on color markers which enables a semi-automated annotation of page corners. We also detail a technique for marker removal. Methods and tools presented in the paper were successfully used to annotate, in few hours, 24889
frames in 150 video files for the smartDOC competition at ICDAR 2015 |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.084; 600.061; 601.223; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CRO2015b |
Serial |
2685 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; David Fernandez; Alicia Fornes; Ernest Valveny; Gemma Sanchez; Josep Llados |
|
|
Title |
Runlength Histogram Image Signature for Perceptual Retrieval of Architectural Floor Plans |
Type |
Conference Article |
|
Year |
2013 |
Publication |
10th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Bethlehem; PA; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; 600.045; 600.061; 600.056 |
Approved |
no |
|
|
Call Number |
Admin @ si @ HFF2013b |
Serial |
2695 |
|
Permanent link to this record |