toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links (down)
Author Francisco Cruz; Oriol Ramos Terrades edit   pdf
doi  openurl
  Title Handwritten Line Detection via an EM Algorithm Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 718-722  
  Keywords  
  Abstract In this paper we present a handwritten line segmentation method devised to work on documents composed of several paragraphs with multiple line orientations. The method is based on a variation of the EM algorithm for the estimation of a set of regression lines between the connected components that compose the image. We evaluated our method on the ICDAR2009 handwriting segmentation contest dataset with promising results that overcome most of the presented methods. In addition, we prove the usability of the presented method by performing line segmentation on the George Washington database obtaining encouraging results.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ CrT2013 Serial 2329  
Permanent link to this record
 

 
Author Albert Gordo; Marçal Rusiñol; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
doi  openurl
  Title Document Classification and Page Stream Segmentation for Digital Mailroom Applications Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 621-625  
  Keywords  
  Abstract In this paper we present a method for the segmentation of continuous page streams into multipage documents and the simultaneous classification of the resulting documents. We first present an approach to combine the multiple pages of a document into a single feature vector that represents the whole document. Despite its simplicity and low computational cost, the proposed representation yields results comparable to more complex methods in multipage document classification tasks. We then exploit this representation in the context of page stream segmentation. The most plausible segmentation of a page stream into a sequence of multipage documents is obtained by optimizing a statistical model that represents the probability of each segmented multipage document belonging to a particular class. Experimental results are reported on a large sample of real administrative multipage documents.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.056; 602.101 Approved no  
  Call Number Admin @ si @ GRK2013c Serial 2345  
Permanent link to this record
 

 
Author David Aldavert; Marçal Rusiñol; Ricardo Toledo; Josep Llados edit   pdf
doi  openurl
  Title Integrating Visual and Textual Cues for Query-by-String Word Spotting Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 511 - 515  
  Keywords  
  Abstract In this paper, we present a word spotting framework that follows the query-by-string paradigm where word images are represented both by textual and visual representations. The textual representation is formulated in terms of character $n$-grams while the visual one is based on the bag-of-visual-words scheme. These two representations are merged together and projected to a sub-vector space. This transform allows to, given a textual query, retrieve word instances that were only represented by the visual modality. Moreover, this statistical representation can be used together with state-of-the-art indexation structures in order to deal with large-scale scenarios. The proposed method is evaluated using a collection of historical documents outperforming state-of-the-art performances.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; ADAS; 600.045; 600.055; 600.061 Approved no  
  Call Number Admin @ si @ ART2013 Serial 2224  
Permanent link to this record
 

 
Author Andreas Fischer; Volkmar Frinken; Horst Bunke; Ching Y. Suen edit   pdf
doi  openurl
  Title Improving HMM-Based Keyword Spotting with Character Language Models Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 506-510  
  Keywords  
  Abstract Facing high error rates and slow recognition speed for full text transcription of unconstrained handwriting images, keyword spotting is a promising alternative to locate specific search terms within scanned document images. We have previously proposed a learning-based method for keyword spotting using character hidden Markov models that showed a high performance when compared with traditional template image matching. In the lexicon-free approach pursued, only the text appearance was taken into account for recognition. In this paper, we integrate character n-gram language models into the spotting system in order to provide an additional language context. On the modern IAM database as well as the historical George Washington database, we demonstrate that character language models significantly improve the spotting performance.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.045; 605.203 Approved no  
  Call Number Admin @ si @ FFB2013 Serial 2295  
Permanent link to this record
 

 
Author Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title Multi-script Text Extraction from Natural Scenes Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 467-471  
  Keywords  
  Abstract Scene text extraction methodologies are usually based in classification of individual regions or patches, using a priori knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organisation through which text emerges as a perceptually significant group of atomic objects. Therefore humans are able to detect text even in languages and scripts never seen before. In this paper, we argue that the text extraction problem could be posed as the detection of meaningful groups of regions. We present a method built around a perceptual organisation framework that exploits collaboration of proximity and similarity laws to create text-group hypotheses. Experiments demonstrate that our algorithm is competitive with state of the art approaches on a standard dataset covering text in variable orientations and two languages.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.056; 601.158; 601.197 Approved no  
  Call Number Admin @ si @ GoK2013 Serial 2310  
Permanent link to this record
 

 
Author Alicia Fornes; Anjan Dutta; Albert Gordo; Josep Llados edit  doi
isbn  openurl
  Title The ICDAR 2011 Music Scores Competition: Staff Removal and Writer Identification Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1511-1515  
  Keywords  
  Abstract In the last years, there has been a growing interest in the analysis of handwritten music scores. In this sense, our goal has been to foster the interest in the analysis of handwritten music scores by the proposal of two different competitions: Staff removal and Writer Identification. Both competitions have been tested on the CVC-MUSCIMA database: a ground-truth of handwritten music score images. This paper describes the competition details, including the dataset and ground-truth, the evaluation metrics, and a short description of the participants, their methods, and the obtained results.  
  Address Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-0-7695-4520-2 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ FDG2011b Serial 1794  
Permanent link to this record
 

 
Author Dimosthenis Karatzas; Sergi Robles; Joan Mas; Farshad Nourbakhsh; Partha Pratim Roy edit  doi
isbn  openurl
  Title ICDAR 2011 Robust Reading Competition – Challege 1: Reading Text in Born-Digital Images (Web and Email) Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1485-1490  
  Keywords  
  Abstract This paper presents the results of the first Challenge of ICDAR 2011 Robust Reading Competition. Challenge 1 is focused on the extraction of text from born-digital images, specifically from images found in Web pages and emails. The challenge was organized in terms of three tasks that look at different stages of the process: text localization, text segmentation and word recognition. In this paper we present the results of the challenge for all three tasks, and make an open call for continuous participation outside the context of ICDAR 2011.  
  Address Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN 978-1-4577-1350-7 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ KRM2011 Serial 1793  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Umapada Pal edit  doi
isbn  openurl
  Title Symbol Spotting in Line Drawings Through Graph Paths Hashing Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 982-986  
  Keywords  
  Abstract In this paper we propose a symbol spotting technique through hashing the shape descriptors of graph paths (Hamiltonian paths). Complex graphical structures in line drawings can be efficiently represented by graphs, which ease the accurate localization of the model symbol. Graph paths are the factorized substructures of graphs which enable robust recognition even in the presence of noise and distortion. In our framework, the entire database of the graphical documents is indexed in hash tables by the locality sensitive hashing (LSH) of shape descriptors of the paths. The hashing data structure aims to execute an approximate k-NN search in a sub-linear time. The spotting method is formulated by a spatial voting scheme to the list of locations of the paths that are decided during the hash table lookup process. We perform detailed experiments with various dataset of line drawings and the results demonstrate the effectiveness and efficiency of the technique.  
  Address Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN 978-1-4577-1350-7 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ DLP2011b Serial 1791  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados; Thierry Brouard edit  doi
isbn  openurl
  Title Subgraph Spotting Through Explicit Graph Embedding: An Application to Content Spotting in Graphic Document Images Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 870-874  
  Keywords  
  Abstract We present a method for spotting a subgraph in a graph repository. Subgraph spotting is a very interesting research problem for various application domains where the use of a relational data structure is mandatory. Our proposed method accomplishes subgraph spotting through graph embedding. We achieve automatic indexation of a graph repository during off-line learning phase, where we (i) break the graphs into 2-node sub graphs (a.k.a. cliques of order 2), which are primitive building-blocks of a graph, (ii) embed the 2-node sub graphs into feature vectors by employing our recently proposed explicit graph embedding technique, (iii) cluster the feature vectors in classes by employing a classic agglomerative clustering technique, (iv) build an index for the graph repository and (v) learn a Bayesian network classifier. The subgraph spotting is achieved during the on-line querying phase, where we (i) break the query graph into 2-node sub graphs, (ii) embed them into feature vectors, (iii) employ the Bayesian network classifier for classifying the query 2-node sub graphs and (iv) retrieve the respective graphs by looking-up in the index of the graph repository. The graphs containing all query 2-node sub graphs form the set of result graphs for the query. Finally, we employ the adjacency matrix of each result graph along with a score function, for spotting the query graph in it. The proposed subgraph spotting method is equally applicable to a wide range of domains, offering ease of query by example (QBE) and granularity of focused retrieval. Experimental results are presented for graphs generated from two repositories of electronic and architectural document images.  
  Address Beijing, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN 978-1-4577-1350-7 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ LRL2011 Serial 1790  
Permanent link to this record
 

 
Author Ricard Coll; Alicia Fornes; Josep Llados edit  doi
isbn  openurl
  Title Graphological Analysis of Handwritten Text Documents for Human Resources Recruitment Type Conference Article
  Year 2009 Publication 10th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1081–1085  
  Keywords  
  Abstract The use of graphology in recruitment processes has become a popular tool in many human resources companies. This paper presents a model that links features from handwritten images to a number of personality characteristics used to measure applicant aptitudes for the job in a particular hiring scenario. In particular we propose a model of measuring active personality and leadership of the writer. Graphological features that define such a profile are measured in terms of document and script attributes like layout configuration, letter size, shape, slant and skew angle of lines, etc. After the extraction, data is classified using a neural network. An experimental framework with real samples has been constructed to illustrate the performance of the approach.  
  Address Barcelona, Spain  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN 978-1-4244-4500-4 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ CFL2009 Serial 1221  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: