|
Records |
Links |
|
Author |
Marçal Rusiñol; J. Chazalon; Jean-Marc Ogier |


|
|
Title |
Combining Focus Measure Operators to Predict OCR Accuracy in Mobile-Captured Document Images |
Type  |
Conference Article |
|
Year |
2014 |
Publication |
11th IAPR International Workshop on Document Analysis and Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
181 - 185 |
|
|
Keywords |
|
|
|
Abstract |
Mobile document image acquisition is a new trend raising serious issues in business document processing workflows. Such digitization procedure is unreliable, and integrates many distortions which must be detected as soon as possible, on the mobile, to avoid paying data transmission fees, and losing information due to the inability to re-capture later a document with temporary availability. In this context, out-of-focus blur is major issue: users have no direct control over it, and it seriously degrades OCR recognition. In this paper, we concentrate on the estimation of focus quality, to ensure a sufficient legibility of a document image for OCR processing. We propose two contributions to improve OCR accuracy prediction for mobile-captured document images. First, we present 24 focus measures, never tested on document images, which are fast to compute and require no training. Second, we show that a combination of those measures enables state-of-the art performance regarding the correlation with OCR accuracy. The resulting approach is fast, robust, and easy to implement in a mobile device. Experiments are performed on a public dataset, and precise details about image processing are given. |
|
|
Address |
Tours; France; April 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4799-3243-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 601.223; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RCO2014a |
Serial |
2545 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; J. Chazalon; Jean-Marc Ogier |

|
|
Title |
Normalisation et validation d'images de documents capturées en mobilité |
Type  |
Conference Article |
|
Year |
2014 |
Publication |
Colloque International Francophone sur l'Écrit et le Document |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
109-124 |
|
|
Keywords |
mobile document image acquisition; perspective correction; illumination correction; quality assessment; focus measure; OCR accuracy prediction |
|
|
Abstract |
Mobile document image acquisition integrates many distortions which must be corrected or detected on the device, before the document becomes unavailable or paying data transmission fees. In this paper, we propose a system to correct perspective and illumination issues, and estimate the sharpness of the image for OCR recognition. The correction step relies on fast and accurate border detection followed by illumination normalization. Its evaluation on a private dataset shows a clear improvement on OCR accuracy. The quality assessment
step relies on a combination of focus measures. Its evaluation on a public dataset shows that this simple method compares well to state of the art, learning-based methods which cannot be embedded on a mobile, and outperforms metric-based methods. |
|
|
Address |
Nancy; France; March 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CIFED |
|
|
Notes |
DAG; 601.223; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RCO2014b |
Serial |
2546 |
|
Permanent link to this record |
|
|
|
|
Author |
Francesco Brughi; Debora Gil; Llorenç Badiella; Eva Jove Casabella; Oriol Ramos Terrades |


|
|
Title |
Exploring the impact of inter-query variability on the performance of retrieval systems |
Type  |
Conference Article |
|
Year |
2014 |
Publication |
11th International Conference on Image Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
8814 |
Issue |
|
Pages |
413–420 |
|
|
Keywords |
|
|
|
Abstract |
This paper introduces a framework for evaluating the performance of information retrieval systems. Current evaluation metrics provide an average score that does not consider performance variability across the query set. In this manner, conclusions lack of any statistical significance, yielding poor inference to cases outside the query set and possibly unfair comparisons. We propose to apply statistical methods in order to obtain a more informative measure for problems in which different query classes can be identified. In this context, we assess the performance variability on two levels: overall variability across the whole query set and specific query class-related variability. To this end, we estimate confidence bands for precision-recall curves, and we apply ANOVA in order to assess the significance of the performance across different query classes. |
|
|
Address |
Algarve; Portugal; October 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-319-11757-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICIAR |
|
|
Notes |
IAM; DAG; 600.060; 600.061; 600.077; 600.075 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BGB2014 |
Serial |
2559 |
|
Permanent link to this record |
|
|
|
|
Author |
P. Wang; V. Eglin; C. Garcia; C. Largeron; Josep Llados; Alicia Fornes |

|
|
Title |
Représentation par graphe de mots manuscrits dans les images pour la recherche par similarité |
Type  |
Conference Article |
|
Year |
2014 |
Publication |
Colloque International Francophone sur l'Écrit et le Document |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
233-248 |
|
|
Keywords |
word spotting; graph-based representation; shape context description; graph edit distance; DTW; block merging; query by example |
|
|
Abstract |
Effective information retrieval on handwritten document images has always been
a challenging task. In this paper, we propose a novel handwritten word spotting approach based on graph representation. The presented model comprises both topological and morphological signatures of handwriting. Skeleton-based graphs with the Shape Context labeled vertexes are established for connected components. Each word image is represented as a sequence of graphs. In order to be robust to the handwriting variations, an exhaustive merging process based on DTW alignment results introduced in the similarity measure between word images. With respect to the computation complexity, an approximate graph edit distance approach using bipartite matching is employed for graph matching. The experiments on the George Washington dataset and the marriage records from the Barcelona Cathedral dataset demonstrate that the proposed approach outperforms the state-of-the-art structural methods. |
|
|
Address |
Nancy; Francia; March 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CIFED |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ WEG2014c |
Serial |
2564 |
|
Permanent link to this record |
|
|
|
|
Author |
Olivier Lefebvre; Pau Riba; Charles Fournier; Alicia Fornes; Josep Llados; Rejean Plamondon; Jules Gagnon-Marchand |


|
|
Title |
Monitoring neuromotricity on-line: a cloud computing approach |
Type  |
Conference Article |
|
Year |
2015 |
Publication |
17th Conference of the International Graphonomics Society IGS2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
The goal of our experiment is to develop a useful and accessible tool that can be used to evaluate a patient's health by analyzing handwritten strokes. We use a cloud computing approach to analyze stroke data sampled on a commercial tablet working on the Android platform and a distant server to perform complex calculations using the Delta and Sigma lognormal algorithms. A Google Drive account is used to store the data and to ease the development of the project. The communication between the tablet, the cloud and the server is encrypted to ensure biomedical information confidentiality. Highly parameterized biomedical tests are implemented on the tablet as well as a free drawing test to evaluate the validity of the data acquired by the first test compared to the second one. A blurred shape model descriptor pattern recognition algorithm is used to classify the data obtained by the free drawing test. The functions presented in this paper are still currently under development and other improvements are needed before launching the application in the public domain. |
|
|
Address |
Pointe-à-Pitre; Guadeloupe; June 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IGS |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LRF2015 |
Serial |
2617 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes; Anjan Dutta |



|
|
Title |
Large-scale Graph Indexing using Binary Embeddings of Node Contexts |
Type  |
Conference Article |
|
Year |
2015 |
Publication |
10th IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
9069 |
Issue |
|
Pages |
208-217 |
|
|
Keywords |
Graph matching; Graph indexing; Application in document analysis; Word spotting; Binary embedding |
|
|
Abstract |
Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations in terms of feature vectors. Retrieving a query graph from a large dataset of graphs has the drawback of the high computational complexity required to compare the query and the target graphs. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. In this paper we propose a fast indexation formalism for graph retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Hence, each attribute counts the length of a walk of order k originated in a vertex with label l. Each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in a handwritten word spotting scenario in images of historical documents. |
|
|
Address |
Beijing; China; May 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
C.-L.Liu; B.Luo; W.G.Kropatsch; J.Cheng |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-319-18223-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GbRPR |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLF2015a |
Serial |
2618 |
|
Permanent link to this record |
|
|
|
|
Author |
Youssef El Rhabi; Simon Loic; Brun Luc |


|
|
Title |
Estimation de la pose d’une caméra à partir d’un flux vidéo en s’approchant du temps réel |
Type  |
Conference Article |
|
Year |
2015 |
Publication |
15ème édition d'ORASIS, journées francophones des jeunes chercheurs en vision par ordinateur ORASIS2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Augmented Reality; SFM; SLAM; real time pose computation; 2D/3D registration |
|
|
Abstract |
Finding a way to estimate quickly and robustly the pose of an image is essential in augmented reality. Here we will discuss the approach we chose in order to get closer to real time by using SIFT points [4]. We propose a method based on filtering both SIFT points and images on which to focus on. Hence we will focus on relevant data. |
|
|
Address |
Amiens; France; June 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ORASIS |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLL2015 |
Serial |
2626 |
|
Permanent link to this record |
|
|
|
|
Author |
Nuria Cirera; Alicia Fornes; Josep Llados |


|
|
Title |
Hidden Markov model topology optimization for handwriting recognition |
Type  |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
626-630 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a method to optimize the topology of linear left-to-right hidden Markov models. These models are very popular for sequential signals modeling on tasks such as handwriting recognition. Many topology definition methods select the number of states for a character model based
on character length. This can be a drawback when characters are shorter than the minimum allowed by the model, since they can not be properly trained nor recognized. The proposed method optimizes the number of states per model by automatically including convenient skip-state transitions and therefore it avoids the aforementioned problem.We discuss and compare our method with other character length-based methods such the Fixed, Bakis and Quantile methods. Our proposal performs well on off-line handwriting recognition task. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CFL2015 |
Serial |
2639 |
|
Permanent link to this record |
|
|
|
|
Author |
Juan Ignacio Toledo; Jordi Cucurull; Jordi Puiggali; Alicia Fornes; Josep Llados |


|
|
Title |
Document Analysis Techniques for Automatic Electoral Document Processing: A Survey |
Type  |
Conference Article |
|
Year |
2015 |
Publication |
E-Voting and Identity, Proceedings of 5th international conference, VoteID 2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
139-141 |
|
|
Keywords |
Document image analysis; Computer vision; Paper ballots; Paper based elections; Optical scan; Tally |
|
|
Abstract |
In this paper, we will discuss the most common challenges in electoral document processing and study the different solutions from the document analysis community that can be applied in each case. We will cover Optical Mark Recognition techniques to detect voter selections in the Australian Ballot, handwritten number recognition for preferential elections and handwriting recognition for write-in areas. We will also propose some particular adjustments that can be made to those general techniques in the specific context of electoral documents. |
|
|
Address |
Bern; Switzerland; September 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
VoteID |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TCP2015 |
Serial |
2641 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes |


|
|
Title |
Handwritten Word Spotting by Inexact Matching of Grapheme Graphs |
Type  |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
781 - 785 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a graph-based word spotting for handwritten documents. Contrary to most word spotting techniques, which use statistical representations, we propose a structural representation suitable to be robust to the inherent deformations of handwriting. Attributed graphs are constructed using a part-based approach. Graphemes extracted from shape convexities are used as stable units of handwriting, and are associated to graph nodes. Then, spatial relations between them determine graph edges. Spotting is defined in terms of an error-tolerant graph matching using bipartite-graph matching algorithm. To make the method usable in large datasets, a graph indexing approach that makes use of binary embeddings is used as preprocessing. Historical documents are used as experimental framework. The approach is comparable to statistical ones in terms of time and memory requirements, especially when dealing with large document collections. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 600.061; 602.006 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLF2015b |
Serial |
2642 |
|
Permanent link to this record |