toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Manuel Carbonell edit  isbn
openurl 
  Title (up) Neural Information Extraction from Semi-structured Documents A Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Sectors as fintech, legaltech or insurance process an inflow of millions of forms, invoices, id documents, claims or similar every day. Together with these, historical archives provide gigantic amounts of digitized documents containing useful information that needs to be stored in machine encoded text with a meaningful structure. This procedure, known as information extraction (IE) comprises the steps of localizing and recognizing text, identifying named entities contained in it and optionally finding relationships among its elements. In this work we explore multi-task neural models at image and graph level to solve all steps in a unified way. While doing so we find benefits and limitations of these end-to-end approaches in comparison with sequential separate methods. More specifically, we first propose a method to produce textual as well as semantic labels with a unified model from handwritten text line images. We do so with the use of a convolutional recurrent neural model trained with connectionist temporal classification to predict the textual as well as semantic information encoded in the images. Secondly, motivated by the success of this approach we investigate the unification of the localization and recognition tasks of handwritten text in full pages with an end-to-end model, observing benefits in doing so. Having two models that tackle information extraction subsequent task pairs in an end-to-end to end manner, we lastly contribute with a method to put them all together in a single neural network to solve the whole information extraction pipeline in a unified way. Doing so we observe some benefits and some limitations in the approach, suggesting that in certain cases it is beneficial to train specialized models that excel at a single challenging task of the information extraction process, as it can be the recognition of named entities or the extraction of relationships between them. For this reason we lastly study the use of the recently arrived graph neural network architectures for the semantic tasks of the information extraction process, which are recognition of named entities and relation extraction, achieving promising results on the relation extraction part.  
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Alicia Fornes;Mauricio Villegas;Josep Llados  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-122714-1-6 Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ Car20 Serial 3483  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit   pdf
doi  openurl
  Title (up) New Approach for Symbol Recognition Combining Shape Context of Interest Points with Sparse Representation Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 265-269  
  Keywords  
  Abstract In this paper, we propose a new approach for symbol description. Our method is built based on the combination of shape context of interest points descriptor and sparse representation. More specifically, we first learn a dictionary describing shape context of interest point descriptors. Then, based on information retrieval techniques, we build a vector model for each symbol based on its sparse representation in a visual vocabulary whose visual words are columns in the learneddictionary. The retrieval task is performed by ranking symbols based on similarity between vector models. Evaluation of our method, using benchmark datasets, demonstrates the validity of our approach and shows that it outperforms related state-of-theart methods.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ DTR2013b Serial 2331  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit   pdf
openurl 
  Title (up) Noise suppression over bi-level graphical documents using a sparse representation Type Conference Article
  Year 2012 Publication Colloque International Francophone sur l'Écrit et le Document Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Bordeaux  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIFED  
  Notes DAG Approved no  
  Call Number Admin @ si @ DTR2012b Serial 2136  
Permanent link to this record
 

 
Author Anguelos Nicolaou; Sounak Dey; V.Christlein; A.Maier; Dimosthenis Karatzas edit   pdf
url  openurl
  Title (up) Non-deterministic Behavior of Ranking-based Metrics when Evaluating Embeddings Type Conference Article
  Year 2018 Publication International Workshop on Reproducible Research in Pattern Recognition Abbreviated Journal  
  Volume 11455 Issue Pages 71-82  
  Keywords  
  Abstract Embedding data into vector spaces is a very popular strategy of pattern recognition methods. When distances between embeddings are quantized, performance metrics become ambiguous. In this paper, we present an analysis of the ambiguity quantized distances introduce and provide bounds on the effect. We demonstrate that it can have a measurable effect in empirical data in state-of-the-art systems. We also approach the phenomenon from a computer security perspective and demonstrate how someone being evaluated by a third party can exploit this ambiguity and greatly outperform a random predictor without even access to the input data. We also suggest a simple solution making the performance metrics, which rely on ranking, totally deterministic and impervious to such exploits.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ NDC2018 Serial 3178  
Permanent link to this record
 

 
Author Marçal Rusiñol; J. Chazalon; Jean-Marc Ogier edit  openurl
  Title (up) Normalisation et validation d'images de documents capturées en mobilité Type Conference Article
  Year 2014 Publication Colloque International Francophone sur l'Écrit et le Document Abbreviated Journal  
  Volume Issue Pages 109-124  
  Keywords mobile document image acquisition; perspective correction; illumination correction; quality assessment; focus measure; OCR accuracy prediction  
  Abstract Mobile document image acquisition integrates many distortions which must be corrected or detected on the device, before the document becomes unavailable or paying data transmission fees. In this paper, we propose a system to correct perspective and illumination issues, and estimate the sharpness of the image for OCR recognition. The correction step relies on fast and accurate border detection followed by illumination normalization. Its evaluation on a private dataset shows a clear improvement on OCR accuracy. The quality assessment
step relies on a combination of focus measures. Its evaluation on a public dataset shows that this simple method compares well to state of the art, learning-based methods which cannot be embedded on a mobile, and outperforms metric-based methods.
 
  Address Nancy; France; March 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIFED  
  Notes DAG; 601.223; 600.077 Approved no  
  Call Number Admin @ si @ RCO2014b Serial 2546  
Permanent link to this record
 

 
Author Robert Benavente; Gemma Sanchez; Ramon Baldrich; Maria Vanrell; Josep Llados edit  openurl
  Title (up) Normalized colour segmentation for human appearance description. Type Conference Article
  Year 2000 Publication 15 th International Conference on Pattern Recognition Abbreviated Journal  
  Volume 3 Issue Pages 637-641  
  Keywords  
  Abstract  
  Address Barcelona.  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG;CIC Approved no  
  Call Number CAT @ cat @ BSB2000 Serial 223  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny edit   pdf
doi  isbn
openurl 
  Title (up) Notation-invariant patch-based wall detector in architectural floor plans Type Book Chapter
  Year 2013 Publication Graphics Recognition. New Trends and Challenges Abbreviated Journal  
  Volume 7423 Issue Pages 79--88  
  Keywords  
  Abstract Architectural floor plans exhibit a large variability in notation. Therefore, segmenting and identifying the elements of any kind of plan becomes a challenging task for approaches based on grouping structural primitives obtained by vectorization. Recently, a patch-based segmentation method working at pixel level and relying on the construction of a visual vocabulary has been proposed in [1], showing its adaptability to different notations by automatically learning the visual appearance of the elements in each different notation. This paper presents an evolution of that previous work, after analyzing and testing several alternatives for each of the different steps of the method: Firstly, an automatic plan-size normalization process is done. Secondly we evaluate different features to obtain the description of every patch. Thirdly, we train an SVM classifier to obtain the category of every patch instead of constructing a visual vocabulary. These variations of the method have been tested for wall detection on two datasets of architectural floor plans with different notations. After studying in deep each of the steps in the process pipeline, we are able to find the best system configuration, which highly outperforms the results on wall segmentation obtained by the original paper.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-36823-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 600.056; 605.203 Approved no  
  Call Number Admin @ si @ HMS2013 Serial 2322  
Permanent link to this record
 

 
Author Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados; R.Jain; D.Doermann edit  url
doi  openurl
  Title (up) Novel Line Verification for Multiple Instance Focused Retrieval in Document Collections Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 481-485  
  Keywords  
  Abstract  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 601.223; 600.084; 600.061 Approved no  
  Call Number Admin @ si @ GRK2015 Serial 2683  
Permanent link to this record
 

 
Author Ernest Valveny; Antonio Lopez edit   pdf
openurl 
  Title (up) Numeral Recognition for Quality Control of Surgical Sachets Type Miscellaneous
  Year 2003 Publication Proceedings of the Seventh International Conference on Document Analysis and Recognition (ICDAR´03), 379–383 Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;ADAS Approved no  
  Call Number ADAS @ adas @ VaL2003 Serial 423  
Permanent link to this record
 

 
Author Agnes Borras; Josep Llados edit   pdf
url  doi
openurl 
  Title (up) Object Image Retrieval by Shape Content in Complex Scenes Using Geometric Constraints Type Book Chapter
  Year 2005 Publication Pattern Recognition And Image Analysis Abbreviated Journal LNCS  
  Volume 3522 Issue Pages 325–332  
  Keywords  
  Abstract This paper presents an image retrieval system based on 2D shape information. Query shape objects and database images are repre- sented by polygonal approximations of their contours. Afterwards they are encoded, using geometric features, in terms of predefined structures. Shapes are then located in database images by a voting procedure on the spatial domain. Then an alignment matching provides a probability value to rank de database image in the retrieval result. The method al- lows to detect a query object in database images even when they contain complex scenes. Also the shape matching tolerates partial occlusions and affine transformations as translation, rotation or scaling.  
  Address Estoril (Portugal)  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; Approved no  
  Call Number DAG @ dag @ BoL2005; IAM @ iam @ BoL2005 Serial 556  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: