toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Lluis Gomez; Dimosthenis Karatzas edit   pdf
doi  openurl
  Title (up) Multi-script Text Extraction from Natural Scenes Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 467-471  
  Keywords  
  Abstract Scene text extraction methodologies are usually based in classification of individual regions or patches, using a priori knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organisation through which text emerges as a perceptually significant group of atomic objects. Therefore humans are able to detect text even in languages and scripts never seen before. In this paper, we argue that the text extraction problem could be posed as the detection of meaningful groups of regions. We present a method built around a perceptual organisation framework that exploits collaboration of proximity and similarity laws to create text-group hypotheses. Experiments demonstrate that our algorithm is competitive with state of the art approaches on a standard dataset covering text in variable orientations and two languages.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.056; 601.158; 601.197 Approved no  
  Call Number Admin @ si @ GoK2013 Serial 2310  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados edit  url
doi  isbn
openurl 
  Title (up) Multilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces Type Book Chapter
  Year 2013 Publication Graph Embedding for Pattern Analysis Abbreviated Journal  
  Volume Issue Pages 1-26  
  Keywords  
  Abstract Ability to recognize patterns is among the most crucial capabilities of human beings for their survival, which enables them to employ their sophisticated neural and cognitive systems [1], for processing complex audio, visual, smell, touch, and taste signals. Man is the most complex and the best existing system of pattern recognition. Without any explicit thinking, we continuously compare, classify, and identify huge amount of signal data everyday [2], starting from the time we get up in the morning till the last second we fall asleep. This includes recognizing the face of a friend in a crowd, a spoken word embedded in noise, the proper key to lock the door, smell of coffee, the voice of a favorite singer, the recognition of alphabetic characters, and millions of more tasks that we perform on regular basis.  
  Address  
  Corporate Author Thesis  
  Publisher Springer New York Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4614-4456-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ LRL2013b Serial 2271  
Permanent link to this record
 

 
Author Lluis Gomez; Ali Furkan Biten; Ruben Tito; Andres Mafla; Marçal Rusiñol; Ernest Valveny; Dimosthenis Karatzas edit   pdf
url  openurl
  Title (up) Multimodal grid features and cell pointers for scene text visual question answering Type Journal Article
  Year 2021 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 150 Issue Pages 242-249  
  Keywords  
  Abstract This paper presents a new model for the task of scene text visual question answering. In this task questions about a given image can only be answered by reading and understanding scene text. Current state of the art models for this task make use of a dual attention mechanism in which one attention module attends to visual features while the other attends to textual features. A possible issue with this is that it makes difficult for the model to reason jointly about both modalities. To fix this problem we propose a new model that is based on an single attention mechanism that attends to multi-modal features conditioned to the question. The output weights of this attention module over a grid of multi-modal spatial features are interpreted as the probability that a certain spatial location of the image contains the answer text to the given question. Our experiments demonstrate competitive performance in two standard datasets with a model that is faster than previous methods at inference time. Furthermore, we also provide a novel analysis of the ST-VQA dataset based on a human performance study. Supplementary material, code, and data is made available through this link.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.084; 600.121 Approved no  
  Call Number Admin @ si @ GBT2021 Serial 3620  
Permanent link to this record
 

 
Author Marçal Rusiñol; Volkmar Frinken; Dimosthenis Karatzas; Andrew Bagdanov; Josep Llados edit  doi
openurl 
  Title (up) Multimodal page classification in administrative document image streams Type Journal Article
  Year 2014 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 17 Issue 4 Pages 331-341  
  Keywords Digital mail room; Multimodal page classification; Visual and textual document description  
  Abstract In this paper, we present a page classification application in a banking workflow. The proposed architecture represents administrative document images by merging visual and textual descriptions. The visual description is based on a hierarchical representation of the pixel intensity distribution. The textual description uses latent semantic analysis to represent document content as a mixture of topics. Several off-the-shelf classifiers and different strategies for combining visual and textual cues have been evaluated. A final step uses an n-gram model of the page stream allowing a finer-grained classification of pages. The proposed method has been tested in a real large-scale environment and we report results on a dataset of 70,000 pages.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; LAMP; 600.056; 600.061; 601.240; 601.223; 600.077; 600.079 Approved no  
  Call Number Admin @ si @ RFK2014 Serial 2523  
Permanent link to this record
 

 
Author Marçal Rusiñol; Dimosthenis Karatzas; Andrew Bagdanov; Josep Llados edit   pdf
isbn  openurl
  Title (up) Multipage Document Retrieval by Textual and Visual Representations Type Conference Article
  Year 2012 Publication 21st International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 521-524  
  Keywords  
  Abstract In this paper we present a multipage administrative document image retrieval system based on textual and visual representations of document pages. Individual pages are represented by textual or visual information using a bag-of-words framework. Different fusion strategies are evaluated which allow the system to perform multipage document retrieval on the basis of a single page retrieval system. Results are reported on a large dataset of document images sampled from a banking workflow.  
  Address Tsukuba Science City, Japan  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN 978-1-4673-2216-4 Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number Admin @ si @ RKB2012 Serial 2053  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Oriol Ramos Terrades; Horst Bunke edit  doi
isbn  openurl
  Title (up) Multiple Classifiers for Graph of Words Embedding Type Conference Article
  Year 2011 Publication 10th International Conference on Multiple Classifier Systems Abbreviated Journal  
  Volume 6713 Issue Pages 36-45  
  Keywords  
  Abstract During the last years, there has been an increasing interest in applying the multiple classifier framework to the domain of structural pattern recognition. Constructing base classifiers when the input patterns are graph based representations is not an easy problem. In this work, we make use of the graph embedding methodology in order to construct different feature vector representations for graphs. The graph of words embedding assigns a feature vector to every graph by counting unary and binary relations between node representatives and combining these pieces of information into a single vector. Selecting different node representatives leads to different vectorial representations and therefore to different base classifiers that can be combined. We experimentally show how this methodology significantly improves the classification of graphs with respect to single base classifiers.  
  Address Napoles, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Carlo Sansone; Josef Kittler; Fabio Roli  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21556-8 Medium  
  Area Expedition Conference MCS  
  Notes DAG Approved no  
  Call Number Admin @ si @GVR2011 Serial 1745  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Alicia Fornes edit  doi
openurl 
  Title (up) Musigraph: Optical Music Recognition Through Object Detection and Graph Neural Network Type Conference Article
  Year 2022 Publication Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) Abbreviated Journal  
  Volume 13639 Issue Pages 171-184  
  Keywords Object detection; Optical music recognition; Graph neural network  
  Abstract During the last decades, the performance of optical music recognition has been increasingly improving. However, and despite the 2-dimensional nature of music notation (e.g. notes have rhythm and pitch), most works treat musical scores as a sequence of symbols in one dimension, which make their recognition still a challenge. Thus, in this work we explore the use of graph neural networks for musical score recognition. First, because graphs are suited for n-dimensional representations, and second, because the combination of graphs with deep learning has shown a great performance in similar applications. Our methodology consists of: First, we will detect each isolated/atomic symbols (those that can not be decomposed in more graphical primitives) and the primitives that form a musical symbol. Then, we will build the graph taking as root node the notehead and as leaves those primitives or symbols that modify the note’s rhythm (stem, beam, flag) or pitch (flat, sharp, natural). Finally, the graph is translated into a human-readable character sequence for a final transcription and evaluation. Our method has been tested on more than five thousand measures, showing promising results.  
  Address December 04 – 07, 2022; Hyderabad, India  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICFHR  
  Notes DAG; 600.162; 600.140; 602.230 Approved no  
  Call Number Admin @ si @ BRF2022b Serial 3740  
Permanent link to this record
 

 
Author Emanuele Vivoli; Ali Furkan Biten; Andres Mafla; Dimosthenis Karatzas; Lluis Gomez edit   pdf
url  doi
openurl 
  Title (up) MUST-VQA: MUltilingual Scene-text VQA Type Conference Article
  Year 2022 Publication Proceedings European Conference on Computer Vision Workshops Abbreviated Journal  
  Volume 13804 Issue Pages 345–358  
  Keywords Visual question answering; Scene text; Translation robustness; Multilingual models; Zero-shot transfer; Power of language models  
  Abstract In this paper, we present a framework for Multilingual Scene Text Visual Question Answering that deals with new languages in a zero-shot fashion. Specifically, we consider the task of Scene Text Visual Question Answering (STVQA) in which the question can be asked in different languages and it is not necessarily aligned to the scene text language. Thus, we first introduce a natural step towards a more generalized version of STVQA: MUST-VQA. Accounting for this, we discuss two evaluation scenarios in the constrained setting, namely IID and zero-shot and we demonstrate that the models can perform on a par on a zero-shot setting. We further provide extensive experimentation and show the effectiveness of adapting multilingual language models into STVQA tasks.  
  Address Tel-Aviv; Israel; October 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes DAG; 302.105; 600.155; 611.002 Approved no  
  Call Number Admin @ si @ VBM2022 Serial 3770  
Permanent link to this record
 

 
Author Manuel Carbonell; Pau Riba; Mauricio Villegas; Alicia Fornes; Josep Llados edit   pdf
openurl 
  Title (up) Named Entity Recognition and Relation Extraction with Graph Neural Networks in Semi Structured Documents Type Conference Article
  Year 2020 Publication 25th International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract The use of administrative documents to communicate and leave record of business information requires of methods
able to automatically extract and understand the content from
such documents in a robust and efficient way. In addition,
the semi-structured nature of these reports is specially suited
for the use of graph-based representations which are flexible
enough to adapt to the deformations from the different document
templates. Moreover, Graph Neural Networks provide the proper
methodology to learn relations among the data elements in
these documents. In this work we study the use of Graph
Neural Network architectures to tackle the problem of entity
recognition and relation extraction in semi-structured documents.
Our approach achieves state of the art results in the three
tasks involved in the process. Additionally, the experimentation
with two datasets of different nature demonstrates the good
generalization ability of our approach.
 
  Address Virtual; January 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ CRV2020 Serial 3509  
Permanent link to this record
 

 
Author Anjan Dutta; Josep Llados; Horst Bunke; Umapada Pal edit   pdf
doi  openurl
  Title (up) Near Convex Region Adjacency Graph and Approximate Neighborhood String Matching for Symbol Spotting in Graphical Documents Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1078-1082  
  Keywords  
  Abstract This paper deals with a subgraph matching problem in Region Adjacency Graph (RAG) applied to symbol spotting in graphical documents. RAG is a very important, efficient and natural way of representing graphical information with a graph but this is limited to cases where the information is well defined with perfectly delineated regions. What if the information we are interested in is not confined within well defined regions? This paper addresses this particular problem and solves it by defining near convex grouping of oriented line segments which results in near convex regions. Pure convexity imposes hard constraints and can not handle all the cases efficiently. Hence to solve this problem we have defined a new type of convexity of regions, which allows convex regions to have concavity to some extend. We call this kind of regions Near Convex Regions (NCRs). These NCRs are then used to create the Near Convex Region Adjacency Graph (NCRAG) and with this representation we have formulated the problem of symbol spotting in graphical documents as a subgraph matching problem. For subgraph matching we have used the Approximate Edit Distance Algorithm (AEDA) on the neighborhood string, which starts working after finding a key node in the input or target graph and iteratively identifies similar nodes of the query graph in the neighborhood of the key node. The experiments are performed on artificial, real and distorted datasets.  
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.045; 600.056; 600.061; 601.152 Approved no  
  Call Number Admin @ si @ DLB2013a Serial 2358  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: