|
Records |
Links |
|
Author |
Lluis Gomez; Dimosthenis Karatzas |
|
|
Title |
Multi-script Text Extraction from Natural Scenes |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
467-471 |
|
|
Keywords |
|
|
|
Abstract |
Scene text extraction methodologies are usually based in classification of individual regions or patches, using a priori knowledge for a given script or language. Human perception of text, on the other hand, is based on perceptual organisation through which text emerges as a perceptually significant group of atomic objects. Therefore humans are able to detect text even in languages and scripts never seen before. In this paper, we argue that the text extraction problem could be posed as the detection of meaningful groups of regions. We present a method built around a perceptual organisation framework that exploits collaboration of proximity and similarity laws to create text-group hypotheses. Experiments demonstrate that our algorithm is competitive with state of the art approaches on a standard dataset covering text in variable orientations and two languages. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.056; 601.158; 601.197 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GoK2013 |
Serial |
2310 |
|
Permanent link to this record |
|
|
|
|
Author |
Muhammad Muzzamil Luqman; Jean-Yves Ramel; Josep Llados |
|
|
Title |
Multilevel Analysis of Attributed Graphs for Explicit Graph Embedding in Vector Spaces |
Type |
Book Chapter |
|
Year |
2013 |
Publication |
Graph Embedding for Pattern Analysis |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1-26 |
|
|
Keywords |
|
|
|
Abstract |
Ability to recognize patterns is among the most crucial capabilities of human beings for their survival, which enables them to employ their sophisticated neural and cognitive systems [1], for processing complex audio, visual, smell, touch, and taste signals. Man is the most complex and the best existing system of pattern recognition. Without any explicit thinking, we continuously compare, classify, and identify huge amount of signal data everyday [2], starting from the time we get up in the morning till the last second we fall asleep. This includes recognizing the face of a friend in a crowd, a spoken word embedded in noise, the proper key to lock the door, smell of coffee, the voice of a favorite singer, the recognition of alphabetic characters, and millions of more tasks that we perform on regular basis. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer New York |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4614-4456-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ LRL2013b |
Serial |
2271 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Gomez; Ali Furkan Biten; Ruben Tito; Andres Mafla; Marçal Rusiñol; Ernest Valveny; Dimosthenis Karatzas |
|
|
Title |
Multimodal grid features and cell pointers for scene text visual question answering |
Type |
Journal Article |
|
Year |
2021 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
150 |
Issue |
|
Pages |
242-249 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a new model for the task of scene text visual question answering. In this task questions about a given image can only be answered by reading and understanding scene text. Current state of the art models for this task make use of a dual attention mechanism in which one attention module attends to visual features while the other attends to textual features. A possible issue with this is that it makes difficult for the model to reason jointly about both modalities. To fix this problem we propose a new model that is based on an single attention mechanism that attends to multi-modal features conditioned to the question. The output weights of this attention module over a grid of multi-modal spatial features are interpreted as the probability that a certain spatial location of the image contains the answer text to the given question. Our experiments demonstrate competitive performance in two standard datasets with a model that is faster than previous methods at inference time. Furthermore, we also provide a novel analysis of the ST-VQA dataset based on a human performance study. Supplementary material, code, and data is made available through this link. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ GBT2021 |
Serial |
3620 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Volkmar Frinken; Dimosthenis Karatzas; Andrew Bagdanov; Josep Llados |
|
|
Title |
Multimodal page classification in administrative document image streams |
Type |
Journal Article |
|
Year |
2014 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
17 |
Issue |
4 |
Pages |
331-341 |
|
|
Keywords |
Digital mail room; Multimodal page classification; Visual and textual document description |
|
|
Abstract |
In this paper, we present a page classification application in a banking workflow. The proposed architecture represents administrative document images by merging visual and textual descriptions. The visual description is based on a hierarchical representation of the pixel intensity distribution. The textual description uses latent semantic analysis to represent document content as a mixture of topics. Several off-the-shelf classifiers and different strategies for combining visual and textual cues have been evaluated. A final step uses an n-gram model of the page stream allowing a finer-grained classification of pages. The proposed method has been tested in a real large-scale environment and we report results on a dataset of 70,000 pages. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; LAMP; 600.056; 600.061; 601.240; 601.223; 600.077; 600.079 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RFK2014 |
Serial |
2523 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Dimosthenis Karatzas; Andrew Bagdanov; Josep Llados |
|
|
Title |
Multipage Document Retrieval by Textual and Visual Representations |
Type |
Conference Article |
|
Year |
2012 |
Publication |
21st International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
521-524 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a multipage administrative document image retrieval system based on textual and visual representations of document pages. Individual pages are represented by textual or visual information using a bag-of-words framework. Different fusion strategies are evaluated which allow the system to perform multipage document retrieval on the basis of a single page retrieval system. Results are reported on a large dataset of document images sampled from a banking workflow. |
|
|
Address |
Tsukuba Science City, Japan |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1051-4651 |
ISBN |
978-1-4673-2216-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ RKB2012 |
Serial |
2053 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Oriol Ramos Terrades; Horst Bunke |
|
|
Title |
Multiple Classifiers for Graph of Words Embedding |
Type |
Conference Article |
|
Year |
2011 |
Publication |
10th International Conference on Multiple Classifier Systems |
Abbreviated Journal |
|
|
|
Volume |
6713 |
Issue |
|
Pages |
36-45 |
|
|
Keywords |
|
|
|
Abstract |
During the last years, there has been an increasing interest in applying the multiple classifier framework to the domain of structural pattern recognition. Constructing base classifiers when the input patterns are graph based representations is not an easy problem. In this work, we make use of the graph embedding methodology in order to construct different feature vector representations for graphs. The graph of words embedding assigns a feature vector to every graph by counting unary and binary relations between node representatives and combining these pieces of information into a single vector. Selecting different node representatives leads to different vectorial representations and therefore to different base classifiers that can be combined. We experimentally show how this methodology significantly improves the classification of graphs with respect to single base classifiers. |
|
|
Address |
Napoles, Italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
Carlo Sansone; Josef Kittler; Fabio Roli |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-642-21556-8 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
MCS |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @GVR2011 |
Serial |
1745 |
|
Permanent link to this record |
|
|
|
|
Author |
Arnau Baro; Pau Riba; Alicia Fornes |
|
|
Title |
Musigraph: Optical Music Recognition Through Object Detection and Graph Neural Network |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Frontiers in Handwriting Recognition. International Conference on Frontiers in Handwriting Recognition (ICFHR2022) |
Abbreviated Journal |
|
|
|
Volume |
13639 |
Issue |
|
Pages |
171-184 |
|
|
Keywords |
Object detection; Optical music recognition; Graph neural network |
|
|
Abstract |
During the last decades, the performance of optical music recognition has been increasingly improving. However, and despite the 2-dimensional nature of music notation (e.g. notes have rhythm and pitch), most works treat musical scores as a sequence of symbols in one dimension, which make their recognition still a challenge. Thus, in this work we explore the use of graph neural networks for musical score recognition. First, because graphs are suited for n-dimensional representations, and second, because the combination of graphs with deep learning has shown a great performance in similar applications. Our methodology consists of: First, we will detect each isolated/atomic symbols (those that can not be decomposed in more graphical primitives) and the primitives that form a musical symbol. Then, we will build the graph taking as root node the notehead and as leaves those primitives or symbols that modify the note’s rhythm (stem, beam, flag) or pitch (flat, sharp, natural). Finally, the graph is translated into a human-readable character sequence for a final transcription and evaluation. Our method has been tested on more than five thousand measures, showing promising results. |
|
|
Address |
December 04 – 07, 2022; Hyderabad, India |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICFHR |
|
|
Notes |
DAG; 600.162; 600.140; 602.230 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BRF2022b |
Serial |
3740 |
|
Permanent link to this record |
|
|
|
|
Author |
Emanuele Vivoli; Ali Furkan Biten; Andres Mafla; Dimosthenis Karatzas; Lluis Gomez |
|
|
Title |
MUST-VQA: MUltilingual Scene-text VQA |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Proceedings European Conference on Computer Vision Workshops |
Abbreviated Journal |
|
|
|
Volume |
13804 |
Issue |
|
Pages |
345–358 |
|
|
Keywords |
Visual question answering; Scene text; Translation robustness; Multilingual models; Zero-shot transfer; Power of language models |
|
|
Abstract |
In this paper, we present a framework for Multilingual Scene Text Visual Question Answering that deals with new languages in a zero-shot fashion. Specifically, we consider the task of Scene Text Visual Question Answering (STVQA) in which the question can be asked in different languages and it is not necessarily aligned to the scene text language. Thus, we first introduce a natural step towards a more generalized version of STVQA: MUST-VQA. Accounting for this, we discuss two evaluation scenarios in the constrained setting, namely IID and zero-shot and we demonstrate that the models can perform on a par on a zero-shot setting. We further provide extensive experimentation and show the effectiveness of adapting multilingual language models into STVQA tasks. |
|
|
Address |
Tel-Aviv; Israel; October 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECCVW |
|
|
Notes |
DAG; 302.105; 600.155; 611.002 |
Approved |
no |
|
|
Call Number |
Admin @ si @ VBM2022 |
Serial |
3770 |
|
Permanent link to this record |
|
|
|
|
Author |
Manuel Carbonell; Pau Riba; Mauricio Villegas; Alicia Fornes; Josep Llados |
|
|
Title |
Named Entity Recognition and Relation Extraction with Graph Neural Networks in Semi Structured Documents |
Type |
Conference Article |
|
Year |
2020 |
Publication |
25th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
The use of administrative documents to communicate and leave record of business information requires of methods
able to automatically extract and understand the content from
such documents in a robust and efficient way. In addition,
the semi-structured nature of these reports is specially suited
for the use of graph-based representations which are flexible
enough to adapt to the deformations from the different document
templates. Moreover, Graph Neural Networks provide the proper
methodology to learn relations among the data elements in
these documents. In this work we study the use of Graph
Neural Network architectures to tackle the problem of entity
recognition and relation extraction in semi-structured documents.
Our approach achieves state of the art results in the three
tasks involved in the process. Additionally, the experimentation
with two datasets of different nature demonstrates the good
generalization ability of our approach. |
|
|
Address |
Virtual; January 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CRV2020 |
Serial |
3509 |
|
Permanent link to this record |
|
|
|
|
Author |
Anjan Dutta; Josep Llados; Horst Bunke; Umapada Pal |
|
|
Title |
Near Convex Region Adjacency Graph and Approximate Neighborhood String Matching for Symbol Spotting in Graphical Documents |
Type |
Conference Article |
|
Year |
2013 |
Publication |
12th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1078-1082 |
|
|
Keywords |
|
|
|
Abstract |
This paper deals with a subgraph matching problem in Region Adjacency Graph (RAG) applied to symbol spotting in graphical documents. RAG is a very important, efficient and natural way of representing graphical information with a graph but this is limited to cases where the information is well defined with perfectly delineated regions. What if the information we are interested in is not confined within well defined regions? This paper addresses this particular problem and solves it by defining near convex grouping of oriented line segments which results in near convex regions. Pure convexity imposes hard constraints and can not handle all the cases efficiently. Hence to solve this problem we have defined a new type of convexity of regions, which allows convex regions to have concavity to some extend. We call this kind of regions Near Convex Regions (NCRs). These NCRs are then used to create the Near Convex Region Adjacency Graph (NCRAG) and with this representation we have formulated the problem of symbol spotting in graphical documents as a subgraph matching problem. For subgraph matching we have used the Approximate Edit Distance Algorithm (AEDA) on the neighborhood string, which starts working after finding a key node in the input or target graph and iteratively identifies similar nodes of the query graph in the neighborhood of the key node. The experiments are performed on artificial, real and distorted datasets. |
|
|
Address |
Washington; USA; August 2013 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1520-5363 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.045; 600.056; 600.061; 601.152 |
Approved |
no |
|
|
Call Number |
Admin @ si @ DLB2013a |
Serial |
2358 |
|
Permanent link to this record |