toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Salim Jouili; Salvatore Tabbone; Ernest Valveny edit  isbn
openurl 
  Title (down) Evaluation of graph matching measures for documents retrieval Type Conference Article
  Year 2009 Publication In proceedings of 8th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 13–21  
  Keywords Graph Matching; Graph retrieval; structural representation; Performance Evaluation  
  Abstract In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used which include line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each grahp distance measure depends on the kind of data and the graph representation technique.  
  Address La Rochelle, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ JTV2009a Serial 1230  
Permanent link to this record
 

 
Author Carles Sanchez; Oriol Ramos Terrades; Patricia Marquez; Enric Marti; Jaume Rocarias; Debora Gil edit   pdf
openurl 
  Title (down) Evaluación automática de prácticas en Moodle para el aprendizaje autónomo en Ingenierías Type Miscellaneous
  Year 2014 Publication 8th International Congress on University Teaching and Innovation Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address Tarragona; juliol 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIDUI  
  Notes IAM; 600.075;DAG Approved no  
  Call Number Admin @ si @ SRM2014 Serial 2458  
Permanent link to this record
 

 
Author Youssef El Rhabi; Simon Loic; Brun Luc edit   pdf
url  openurl
  Title (down) Estimation de la pose d’une caméra à partir d’un flux vidéo en s’approchant du temps réel Type Conference Article
  Year 2015 Publication 15ème édition d'ORASIS, journées francophones des jeunes chercheurs en vision par ordinateur ORASIS2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords Augmented Reality; SFM; SLAM; real time pose computation; 2D/3D registration  
  Abstract Finding a way to estimate quickly and robustly the pose of an image is essential in augmented reality. Here we will discuss the approach we chose in order to get closer to real time by using SIFT points [4]. We propose a method based on filtering both SIFT points and images on which to focus on. Hence we will focus on relevant data.  
  Address Amiens; France; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ORASIS  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ RLL2015 Serial 2626  
Permanent link to this record
 

 
Author Pau Riba; Josep Llados; Alicia Fornes edit   pdf
doi  openurl
  Title (down) Error-tolerant coarse-to-fine matching model for hierarchical graphs Type Conference Article
  Year 2017 Publication 11th IAPR-TC-15 International Workshop on Graph-Based Representations in Pattern Recognition Abbreviated Journal  
  Volume 10310 Issue Pages 107-117  
  Keywords Graph matching; Hierarchical graph; Graph-based representation; Coarse-to-fine matching  
  Abstract Graph-based representations are effective tools to capture structural information from visual elements. However, retrieving a query graph from a large database of graphs implies a high computational complexity. Moreover, these representations are very sensitive to noise or small changes. In this work, a novel hierarchical graph representation is designed. Using graph clustering techniques adapted from graph-based social media analysis, we propose to generate a hierarchy able to deal with different levels of abstraction while keeping information about the topology. For the proposed representations, a coarse-to-fine matching method is defined. These approaches are validated using real scenarios such as classification of colour images and handwritten word spotting.  
  Address Anacapri; Italy; May 2017  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor Pasquale Foggia; Cheng-Lin Liu; Mario Vento  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GbRPR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ RLF2017a Serial 2951  
Permanent link to this record
 

 
Author Ricardo Toledo; Ramon Baldrich; Ernest Valveny; Petia Radeva edit  openurl
  Title (down) Enhancing snakes for vessel detection in angiography images. Type Miscellaneous
  Year 2002 Publication Proceedings of the Second IASTED International Conference Visualization, Imaging and Image Proceesing VIIP 2002: 139–144. Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes MILAB;DAG;CIC;ADAS Approved no  
  Call Number BCNPCL @ bcnpcl @ TBV2002 Serial 300  
Permanent link to this record
 

 
Author S.K. Jemni; Mohamed Ali Souibgui; Yousri Kessentini; Alicia Fornes edit  url
openurl 
  Title (down) Enhance to Read Better: A Multi-Task Adversarial Network for Handwritten Document Image Enhancement Type Journal Article
  Year 2022 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 123 Issue Pages 108370  
  Keywords  
  Abstract Handwritten document images can be highly affected by degradation for different reasons: Paper ageing, daily-life scenarios (wrinkles, dust, etc.), bad scanning process and so on. These artifacts raise many readability issues for current Handwritten Text Recognition (HTR) algorithms and severely devalue their efficiency. In this paper, we propose an end to end architecture based on Generative Adversarial Networks (GANs) to recover the degraded documents into a and form. Unlike the most well-known document binarization methods, which try to improve the visual quality of the degraded document, the proposed architecture integrates a handwritten text recognizer that promotes the generated document image to be more readable. To the best of our knowledge, this is the first work to use the text information while binarizing handwritten documents. Extensive experiments conducted on degraded Arabic and Latin handwritten documents demonstrate the usefulness of integrating the recognizer within the GAN architecture, which improves both the visual quality and the readability of the degraded document images. Moreover, we outperform the state of the art in H-DIBCO challenges, after fine tuning our pre-trained model with synthetically degraded Latin handwritten images, on this task.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.124; 600.121; 602.230 Approved no  
  Call Number Admin @ si @ JSK2022 Serial 3613  
Permanent link to this record
 

 
Author Manuel Carbonell; Joan Mas; Mauricio Villegas; Alicia Fornes; Josep Llados edit   pdf
url  doi
openurl 
  Title (down) End-to-End Handwritten Text Detection and Transcription in Full Pages Type Conference Article
  Year 2019 Publication 2nd International Workshop on Machine Learning Abbreviated Journal  
  Volume 5 Issue Pages 29-34  
  Keywords Handwritten Text Recognition; Layout Analysis; Text segmentation; Deep Neural Networks; Multi-task learning  
  Abstract When transcribing handwritten document images, inaccuracies in the text segmentation step often cause errors in the subsequent transcription step. For this reason, some recent methods propose to perform the recognition at paragraph level. But still, errors in the segmentation of paragraphs can affect
the transcription performance. In this work, we propose an end-to-end framework to transcribe full pages. The joint text detection and transcription allows to remove the layout analysis requirement at test time. The experimental results show that our approach can achieve comparable results to models that assume
segmented paragraphs, and suggest that joining the two tasks brings an improvement over doing the two tasks separately.
 
  Address Sydney; Australia; September 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR WML  
  Notes DAG; 600.140; 601.311; 600.140 Approved no  
  Call Number Admin @ si @ CMV2019 Serial 3353  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit   pdf
doi  openurl
  Title (down) Embedding of Graphs with Discrete Attributes Via Label Frequencies Type Journal Article
  Year 2013 Publication International Journal of Pattern Recognition and Artificial Intelligence Abbreviated Journal IJPRAI  
  Volume 27 Issue 3 Pages 1360002-1360029  
  Keywords Discrete attributed graphs; graph embedding; graph classification  
  Abstract Graph-based representations of patterns are very flexible and powerful, but they are not easily processed due to the lack of learning algorithms in the domain of graphs. Embedding a graph into a vector space solves this problem since graphs are turned into feature vectors and thus all the statistical learning machinery becomes available for graph input patterns. In this work we present a new way of embedding discrete attributed graphs into vector spaces using node and edge label frequencies. The methodology is experimentally tested on graph classification problems, using patterns of different nature, and it is shown to be competitive to state-of-the-art classification algorithms for graphs, while being computationally much more efficient.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2013 Serial 2305  
Permanent link to this record
 

 
Author Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados edit   pdf
doi  openurl
  Title (down) Embedding Document Structure to Bag-of-Words through Pair-wise Stable Key-regions Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2903 - 2908  
  Keywords  
  Abstract Since the document structure carries valuable discriminative information, plenty of efforts have been made for extracting and understanding document structure among which layout analysis approaches are the most commonly used. In this paper, Distance Transform based MSER (DTMSER) is employed to efficiently extract the document structure as a dendrogram of key-regions which roughly correspond to structural elements such as characters, words and paragraphs. Inspired by the Bag
of Words (BoW) framework, we propose an efficient method for structural document matching by representing the document image as a histogram of key-region pairs encoding structural relationships.
Applied to the scenario of document image retrieval, experimental results demonstrate a remarkable improvement when comparing the proposed method with typical BoW and pyramidal BoW methods.
 
  Address Stockholm; Sweden; August 2014  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.056; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ GRK2014b Serial 2497  
Permanent link to this record
 

 
Author Francisco Cruz; Oriol Ramos Terrades edit   pdf
doi  openurl
  Title (down) EM-Based Layout Analysis Method for Structured Documents Type Conference Article
  Year 2014 Publication 22nd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 315-320  
  Keywords  
  Abstract In this paper we present a method to perform layout analysis in structured documents. We proposed an EM-based algorithm to fit a set of Gaussian mixtures to the different regions according to the logical distribution along the page. After the convergence, we estimate the final shape of the regions according
to the parameters computed for each component of the mixture. We evaluated our method in the task of record detection in a collection of historical structured documents and performed a comparison with other previous works in this task.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1051-4651 ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 602.006; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ CrR2014 Serial 2530  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: