|
Records |
Links |
|
Author |
Alicia Fornes; Josep Llados; Gemma Sanchez; Horst Bunke |

|
|
Title  |
Writer Identification in Old Handwritten Music Scores |
Type |
Conference Article |
|
Year |
2008 |
Publication |
Proceedings of the 8th International Workshop on Document Analysis Systems, |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
347–353 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Nara (Japan) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ FLS2008b |
Serial |
1078 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Josep Llados; Gemma Sanchez; Horst Bunke |

|
|
Title  |
Writer Identification in Old Handwritten Music Scores |
Type |
Book Chapter |
|
Year |
2012 |
Publication |
Pattern Recognition and Signal Processing in Archaeometry: Mathematical and Computational Solutions for Archaeology |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
27-63 |
|
|
Keywords |
|
|
|
Abstract |
The aim of writer identification is determining the writer of a piece of handwriting from a set of writers. In this paper we present a system for writer identification in old handwritten music scores. Even though an important amount of compositions contains handwritten text in the music scores, the aim of our work is to use only music notation to determine the author. The steps of the system proposed are the following. First of all, the music sheet is preprocessed and normalized for obtaining a single binarized music line, without the staff lines. Afterwards, 100 features are extracted for every music line, which are subsequently used in a k-NN classifier that compares every feature vector with prototypes stored in a database. By applying feature selection and extraction methods on the original feature set, the performance is increased. The proposed method has been tested on a database of old music scores from the 17th to 19th centuries, achieving a recognition rate of about 95%. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
IGI-Global |
Place of Publication |
|
Editor |
Copnstantin Papaodysseus |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ FLS2012 |
Serial |
1828 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Gordo; Alicia Fornes; Ernest Valveny |


|
|
Title  |
Writer identification in handwritten musical scores with bags of notes |
Type |
Journal Article |
|
Year |
2013 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
46 |
Issue |
5 |
Pages |
1337-1345 |
|
|
Keywords |
|
|
|
Abstract |
Writer Identification is an important task for the automatic processing of documents. However, the identification of the writer in graphical documents is still challenging. In this work, we adapt the Bag of Visual Words framework to the task of writer identification in handwritten musical scores. A vanilla implementation of this method already performs comparably to the state-of-the-art. Furthermore, we analyze the effect of two improvements of the representation: a Bhattacharyya embedding, which improves the results at virtually no extra cost, and a Fisher Vector representation that very significantly improves the results at the cost of a more complex and costly representation. Experimental evaluation shows results more than 20 points above the state-of-the-art in a new, challenging dataset. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GFV2013 |
Serial |
2307 |
|
Permanent link to this record |
|
|
|
|
Author |
S. Chanda; Umapada Pal; Oriol Ramos Terrades |

|
|
Title  |
Word-Wise Thai and Roman Script Identification |
Type |
Journal |
|
Year |
2009 |
Publication |
ACM Transactions on Asian Language Information Processing |
Abbreviated Journal |
TALIP |
|
|
Volume |
8 |
Issue |
3 |
Pages |
1-21 |
|
|
Keywords |
|
|
|
Abstract |
In some Thai documents, a single text line of a printed document page may contain words of both Thai and Roman scripts. For the Optical Character Recognition (OCR) of such a document page it is better to identify, at first, Thai and Roman script portions and then to use individual OCR systems of the respective scripts on these identified portions. In this article, an SVM-based method is proposed for identification of word-wise printed Roman and Thai scripts from a single line of a document page. Here, at first, the document is segmented into lines and then lines are segmented into character groups (words). In the proposed scheme, we identify the script of a character group combining different character features obtained from structural shape, profile behavior, component overlapping information, topological properties, and water reservoir concept, etc. Based on the experiment on 10,000 data (words) we obtained 99.62% script identification accuracy from the proposed scheme. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1530-0226 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ CPR2009f |
Serial |
1869 |
|
Permanent link to this record |
|
|
|
|
Author |
Jialuo Chen; Pau Riba; Alicia Fornes; Juan Mas; Josep Llados; Joana Maria Pujadas-Mora |


|
|
Title  |
Word-Hunter: A Gamesourcing Experience to Validate the Transcription of Historical Manuscripts |
Type |
Conference Article |
|
Year |
2018 |
Publication |
16th International Conference on Frontiers in Handwriting Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
528-533 |
|
|
Keywords |
Crowdsourcing; Gamification; Handwritten documents; Performance evaluation |
|
|
Abstract |
Nowadays, there are still many handwritten historical documents in archives waiting to be transcribed and indexed. Since manual transcription is tedious and time consuming, the automatic transcription seems the path to follow. However, the performance of current handwriting recognition techniques is not perfect, so a manual validation is mandatory. Crowdsourcing is a good strategy for manual validation, however it is a tedious task. In this paper we analyze experiences based in gamification
in order to propose and design a gamesourcing framework that increases the interest of users. Then, we describe and analyze our experience when validating the automatic transcription using the gamesourcing application. Moreover, thanks to the combination of clustering and handwriting recognition techniques, we can speed up the validation while maintaining the performance. |
|
|
Address |
Niagara Falls, USA; August 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICFHR |
|
|
Notes |
DAG; 600.097; 603.057; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CRF2018 |
Serial |
3169 |
|
Permanent link to this record |
|
|
|
|
Author |
Dena Bazazian; Dimosthenis Karatzas; Andrew Bagdanov |


|
|
Title  |
Word Spotting in Scene Images based on Character Recognition |
Type |
Conference Article |
|
Year |
2018 |
Publication |
IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1872-1874 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we address the problem of unconstrained Word Spotting in scene images. We train a Fully Convolutional Network to produce heatmaps of all the character classes. Then, we employ the Text Proposals approach and, via a rectangle classifier, detect the most likely rectangle for each query word based on the character attribute maps. We evaluate the proposed method on ICDAR2015 and show that it is capable of identifying and recognizing query words in natural scene images. |
|
|
Address |
Salt Lake City; USA; June 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CVPRW |
|
|
Notes |
DAG; 600.129; 600.121 |
Approved |
no |
|
|
Call Number |
BKB2018a |
Serial |
3179 |
|
Permanent link to this record |
|
|
|
|
Author |
Josep Llados; Partha Pratim Roy; Jose Antonio Rodriguez; Gemma Sanchez |

|
|
Title  |
Word Spotting in Archive Documents using Shape Contexts |
Type |
Book Chapter |
|
Year |
2007 |
Publication |
3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4478:290–297 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Girona (Spain) |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ LRR2007 |
Serial |
779 |
|
Permanent link to this record |
|
|
|
|
Author |
Lasse Martensson; Anders Hast; Alicia Fornes |


|
|
Title  |
Word Spotting as a Tool for Scribal Attribution |
Type |
Conference Article |
|
Year |
2017 |
Publication |
2nd Conference of the association of Digital Humanities in the Nordic Countries |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
87-89 |
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
Gothenburg; Suecia; March 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-91-88348-83-8 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DHN |
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ MHF2017 |
Serial |
2954 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; Albert Gordo; Alicia Fornes; Ernest Valveny |

|
|
Title  |
Word Spotting and Recognition with Embedded Attributes |
Type |
Journal Article |
|
Year |
2014 |
Publication |
IEEE Transactions on Pattern Analysis and Machine Intelligence |
Abbreviated Journal |
TPAMI |
|
|
Volume |
36 |
Issue |
12 |
Pages |
2552 - 2566 |
|
|
Keywords |
|
|
|
Abstract |
This article addresses the problems of word spotting and word recognition on images. In word spotting, the goal is to find all instances of a query word in a dataset of images. In recognition, the goal is to recognize the content of the word image, usually aided by a dictionary or lexicon. We describe an approach in which both word images and text strings are embedded in a common vectorial subspace. This is achieved by a combination of label embedding and attributes learning, and a common subspace regression. In this subspace, images and strings that represent the same word are close together, allowing one to cast recognition and retrieval tasks as a nearest neighbor problem. Contrary to most other existing methods, our representation has a fixed length, is low dimensional, and is very fast to compute and, especially, to compare. We test our approach on four public datasets of both handwritten documents and natural images showing results comparable or better than the state-of-the-art on spotting and recognition tasks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0162-8828 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.056; 600.045; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ AGF2014a |
Serial |
2483 |
|
Permanent link to this record |
|
|
|
|
Author |
Suman Ghosh |

|
|
Title  |
Word Spotting and Recognition in Images from Heterogeneous Sources A |
Type |
Book Whole |
|
Year |
2018 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Text is the most common way of information sharing from ages. With recent development of personal images databases and handwritten historic manuscripts the demand for algorithms to make these databases accessible for browsing and indexing are in rise. Enabling search or understanding large collection of manuscripts or image databases needs fast and robust methods. Researchers have found different ways to represent cropped words for understanding and matching, which works well when words are already segmented. However there is no trivial way to extend these for non-segmented documents. In this thesis we explore different methods for text retrieval and recognition from unsegmented document and scene images. Two different ways of representation exist in literature, one uses a fixed length representation learned from cropped words and another a sequence of features of variable length. Throughout this thesis, we have studied both these representation for their suitability in segmentation free understanding of text. In the first part we are focused on segmentation free word spotting using a fixed length representation. We extended the use of the successful PHOC (Pyramidal Histogram of Character) representation to segmentation free retrieval. In the second part of the thesis, we explore sequence based features and finally, we propose a unified solution where the same framework can generate both kind of representations. |
|
|
Address |
November 2018 |
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
Ediciones Graficas Rey |
Place of Publication |
|
Editor |
Ernest Valveny |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-948531-0-4 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ Gho2018 |
Serial |
3217 |
|
Permanent link to this record |