toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Marçal Rusiñol; Josep Llados edit  openurl
  Title (down) Word and Symbol Spotting using Spatial Organization of Local Descriptors Type Conference Article
  Year 2008 Publication Proceedings of the 8th IAPR International Workshop on Document Analysis Systems, Abbreviated Journal  
  Volume Issue Pages 489–496  
  Keywords  
  Abstract  
  Address Nara (Japan)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RuL2008b Serial 1059  
Permanent link to this record
 

 
Author Ilke Demir; Dena Bazazian; Adriana Romero; Viktoriia Sharmanska; Lyne P. Tchapmi edit   pdf
doi  openurl
  Title (down) WiCV 2018: The Fourth Women In Computer Vision Workshop Type Conference Article
  Year 2018 Publication 4th Women in Computer Vision Workshop Abbreviated Journal  
  Volume Issue Pages 1941-19412  
  Keywords Conferences; Computer vision; Industries; Object recognition; Engineering profession; Collaboration; Machine learning  
  Abstract We present WiCV 2018 – Women in Computer Vision Workshop to increase the visibility and inclusion of women researchers in computer vision field, organized in conjunction with CVPR 2018. Computer vision and machine learning have made incredible progress over the past years, yet the number of female researchers is still low both in academia and industry. WiCV is organized to raise visibility of female researchers, to increase the collaboration,
and to provide mentorship and give opportunities to femaleidentifying junior researchers in the field. In its fourth year, we are proud to present the changes and improvements over the past years, summary of statistics for presenters and attendees, followed by expectations from future generations.
 
  Address Salt Lake City; USA; June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WiCV  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ DBR2018 Serial 3222  
Permanent link to this record
 

 
Author Jon Almazan; Lluis Gomez; Suman Ghosh; Ernest Valveny; Dimosthenis Karatzas edit  openurl
  Title (down) WATTS: A common representation of word images and strings using embedded attributes for text recognition and retrieval Type Book Chapter
  Year 2020 Publication Visual Text Interpretation – Algorithms and Applications in Scene Understanding and Document Analysis Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor Analysis”, K. Alahari; C.V. Jawahar  
  Language Summary Language Original Title  
  Series Editor Series Title Series on Advances in Computer Vision and Pattern Recognition Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ AGG2020 Serial 3496  
Permanent link to this record
 

 
Author Soumya Jahagirdar; Minesh Mathew; Dimosthenis Karatzas; CV Jawahar edit   pdf
url  openurl
  Title (down) Watching the News: Towards VideoQA Models that can Read Type Conference Article
  Year 2023 Publication Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Video Question Answering methods focus on commonsense reasoning and visual cognition of objects or persons and their interactions over time. Current VideoQA approaches ignore the textual information present in the video. Instead, we argue that textual information is complementary to the action and provides essential contextualisation cues to the reasoning process. To this end, we propose a novel VideoQA task that requires reading and understanding the text in the video. To explore this direction, we focus on news videos and require QA systems to comprehend and answer questions about the topics presented by combining visual and textual cues in the video. We introduce the ``NewsVideoQA'' dataset that comprises more than 8,600 QA pairs on 3,000+ news videos obtained from diverse news channels from around the world. We demonstrate the limitations of current Scene Text VQA and VideoQA methods and propose ways to incorporate scene text information into VideoQA methods.  
  Address Waikoloa; Hawai; USA; January 2023  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG Approved no  
  Call Number Admin @ si @ JMK2023 Serial 3899  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Joan Mas; Gemma Sanchez; Ernest Valveny edit  url
doi  isbn
openurl 
  Title (down) Wall Patch-Based Segmentation in Architectural Floorplans Type Conference Article
  Year 2011 Publication 11th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 1270-1274  
  Keywords  
  Abstract Segmentation of architectural floor plans is a challenging task, mainly because of the large variability in the notation between different plans. In general, traditional techniques, usually based on analyzing and grouping structural primitives obtained by vectorization, are only able to handle a reduced range of similar notations. In this paper we propose an alternative patch-based segmentation approach working at pixel level, without need of vectorization. The image is divided into a set of patches and a set of features is extracted for every patch. Then, each patch is assigned to a visual word of a previously learned vocabulary and given a probability of belonging to each class of objects. Finally, a post-process assigns the final label for every pixel. This approach has been applied to the detection of walls on two datasets of architectural floor plans with different notations, achieving high accuracy rates.  
  Address Beiging, China  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN 978-0-7695-4520-2 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG Approved no  
  Call Number Admin @ si @ HMS2011a Serial 1792  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Horst Bunke edit  doi
isbn  openurl
  Title (down) Vocabulary Selection for Graph of Words Embedding Type Conference Article
  Year 2011 Publication 5th Iberian Conference on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume 6669 Issue Pages 216-223  
  Keywords  
  Abstract The Graph of Words Embedding consists in mapping every graph in a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. It has been shown to perform well for graphs with discrete label alphabets. In this paper we extend the methodology to graphs with n-dimensional continuous attributes by selecting node representatives. We propose three different discretization procedures for the attribute space and experimentally evaluate the dependence on both the selector and the number of node representatives. In the context of graph classification, the experimental results reveal that on two out of three public databases the proposed extension achieves superior performance over a standard reference system.  
  Address Las Palmas de Gran Canaria. Spain  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Berlin Editor Vitria, Jordi; Sanches, João Miguel Raposo; Hernández, Mario  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21256-7 Medium  
  Area Expedition Conference IbPRIA  
  Notes DAG Approved no  
  Call Number Admin @ si @ GVB2011b Serial 1744  
Permanent link to this record
 

 
Author Souhail Bakkali; Zuheng Ming; Mickael Coustaty; Marçal Rusiñol; Oriol Ramos Terrades edit   pdf
doi  openurl
  Title (down) VLCDoC: Vision-Language Contrastive Pre-Training Model for Cross-Modal Document Classification Type Journal Article
  Year 2023 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 139 Issue Pages 109419  
  Keywords  
  Abstract Multimodal learning from document data has achieved great success lately as it allows to pre-train semantically meaningful features as a prior into a learnable downstream approach. In this paper, we approach the document classification problem by learning cross-modal representations through language and vision cues, considering intra- and inter-modality relationships. Instead of merging features from different modalities into a common representation space, the proposed method exploits high-level interactions and learns relevant semantic information from effective attention flows within and across modalities. The proposed learning objective is devised between intra- and inter-modality alignment tasks, where the similarity distribution per task is computed by contracting positive sample pairs while simultaneously contrasting negative ones in the common feature representation space}. Extensive experiments on public document classification datasets demonstrate the effectiveness and the generalization capacity of our model on both low-scale and large-scale datasets.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ BMC2023 Serial 3826  
Permanent link to this record
 

 
Author Kaida Xiao; Chenyang Fu; Dimosthenis Karatzas; Sophie Wuerger edit  doi
openurl 
  Title (down) Visual Gamma Correction for LCD Displays Type Journal Article
  Year 2011 Publication Displays Abbreviated Journal DIS  
  Volume 32 Issue 1 Pages 17-23  
  Keywords Display calibration; Psychophysics ; Perceptual; Visual gamma correction; Luminance matching; Observer-based calibration  
  Abstract An improved method for visual gamma correction is developed for LCD displays to increase the accuracy of digital colour reproduction. Rather than utilising a photometric measurement device, we use observ- ers’ visual luminance judgements for gamma correction. Eight half tone patterns were designed to gen- erate relative luminances from 1/9 to 8/9 for each colour channel. A psychophysical experiment was conducted on an LCD display to find the digital signals corresponding to each relative luminance by visually matching the half-tone background to a uniform colour patch. Both inter- and intra-observer vari- ability for the eight luminance matches in each channel were assessed and the luminance matches proved to be consistent across observers (DE00 < 3.5) and repeatable (DE00 < 2.2). Based on the individual observer judgements, the display opto-electronic transfer function (OETF) was estimated by using either a 3rd order polynomial regression or linear interpolation for each colour channel. The performance of the proposed method is evaluated by predicting the CIE tristimulus values of a set of coloured patches (using the observer-based OETFs) and comparing them to the expected CIE tristimulus values (using the OETF obtained from spectro-radiometric luminance measurements). The resulting colour differences range from 2 to 4.6 DE00. We conclude that this observer-based method of visual gamma correction is useful to estimate the OETF for LCD displays. Its major advantage is that no particular functional relationship between digital inputs and luminance outputs has to be assumed.  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ XFK2011 Serial 1815  
Permanent link to this record
 

 
Author Suman Ghosh; Ernest Valveny edit   pdf
doi  openurl
  Title (down) Visual attention models for scene text recognition Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract arXiv:1706.01487
In this paper we propose an approach to lexicon-free recognition of text in scene images. Our approach relies on a LSTM-based soft visual attention model learned from convolutional features. A set of feature vectors are derived from an intermediate convolutional layer corresponding to different areas of the image. This permits encoding of spatial information into the image representation. In this way, the framework is able to learn how to selectively focus on different parts of the image. At every time step the recognizer emits one character using a weighted combination of the convolutional feature vectors according to the learned attention model. Training can be done end-to-end using only word level annotations. In addition, we show that modifying the beam search algorithm by integrating an explicit language model leads to significantly better recognition results. We validate the performance of our approach on standard SVT and ICDAR'03 scene text datasets, showing state-of-the-art performance in unconstrained text recognition.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ GhV2017b Serial 3080  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Thierry Brouard; Jean-Yves Ramel; Josep Llados edit  openurl
  Title (down) Vers une approche foue of encapsulation de graphes: application a la reconnaissance de symboles Type Conference Article
  Year 2010 Publication Colloque International Francophone sur l'Écrit et le Document Abbreviated Journal  
  Volume Issue Pages 169-184  
  Keywords Fuzzy interval; Graph embedding; Bayesian network; Symbol recognition  
  Abstract We present a new methodology for symbol recognition, by employing a structural approach for representing visual associations in symbols and a statistical classifier for recognition. A graphic symbol is vectorized, its topological and geometrical details are encoded by an attributed relational graph and a signature is computed for it. Data adapted fuzzy intervals have been introduced for addressing the sensitivity of structural representations to noise. The joint probability distribution of signatures is encoded by a Bayesian network, which serves as a mechanism for pruning irrelevant features and choosing a subset of interesting features from structural signatures of underlying symbol set, and is deployed in a supervised learning scenario for recognizing query symbols. Experimental results on pre-segmented 2D linear architectural and electronic symbols from GREC databases are presented.  
  Address Sousse, Tunisia  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CIFED  
  Notes DAG Approved no  
  Call Number DAG @ dag @ LBR2010a Serial 1293  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: