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Abstract

Multimodal learning from document data has achieved great success lately

as it allows to pre-train semantically meaningful features as a prior into

a learnable downstream task. In this paper, we approach the document

classification problem by learning cross-modal representations through lan-

guage and vision cues, considering intra- and inter-modality relationships.

Instead of merging features from different modalities into a joint representa-

tion space, the proposed method exploits high-level interactions and learns

relevant semantic information from effective attention flows within and across

modalities. The proposed learning objective is devised between intra- and

inter-modality alignment tasks, where the similarity distribution per task is

computed by contracting positive sample pairs while simultaneously contrast-
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oriolrt@cvc.uab.cat (Oriol Ramos Terrades)

Preprint submitted to Pattern Recognition July 12, 2022

ar
X

iv
:2

20
5.

12
02

9v
2 

 [
cs

.C
V

] 
 1

1 
Ju

l 2
02

2



ing negative ones in the joint representation space. Extensive experiments

on public document classification datasets demonstrate the effectiveness and

the generality of our model on low-scale and large-scale datasets.
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Contrastive Learning, Self-Attention, Transformers

1. Introduction

Document data combines different sensory input modalities such as vi-

sion, language, and layout, which allow to extract useful structured informa-

tion and to learn meaningful representation of its content. These types of

inputs are approximated by combining visual-textual information as two co-

herent and complementary signals that can be further enhanced with layout

information. Unlike general images from natural scenes, the extraction of

accurate and structured information from the wide variety of document data

is very challenging considering their different structural properties through

vision, and their textual semantic information through language, as displayed

in the Figure 1. Therefore, recent research has started to consider how to

leverage and incorporate the relations within those different modalities in a

unified network to capture latent information for exploring better yet effec-

tive multimodal representations. Such systems have shown their effectiveness

in improving multimodal representation learning in a pretrain-then-finetune

paradigm, where models are first pre-trained with large-scale data and then
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Figure 1: Document samples from the categories of the RVL-CDIP dataset which show
the different structural properties of each document in each category. From left to right:
Advertisement, Budget, Email, File folder, Form, Handwritten, Invoice, Letter, Memo,
News article, Presentation, Questionnaire, Resume, Scientific publication, Scientific re-
port, Specification

fine-tuned to each downstream task [1, 2].

Several studies that have been devoted to perform the document clas-

sification task, often used shallow cross-modal feature fusion modules to

leverage visual-textual features such as naive concatenation, element-wise

multiplication, and ensemble methods to extract cross-modal features [3, 4].

Despite being studied extensively, the shortcomings of the preceding cross-

modal feature fusion approaches are twofold. First, during inference, the

vision-language sample pairs need to be fed to the fusion modules to cal-

culate the prediction scores in order to perform the document classification

task, which remains computationally expensive. Second, the existing vision-

language modality gap makes it difficult to capture high-level interactions

between image regions and text sequences, as the feature representations of

the vision-language modalities are usually inconsistent and their distributions

span different feature space.

Therefore, the learning process of each modality is independent one from
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another and fails to capture the non-linearity of image and text sentences

within document data based on simple linear operations. In contrast, to

embody the idea that better features make better classifiers, a framework

based on the pretrain-then-finetune paradigm which allows to learn more

general and model-agnostic cross-modal representations is highly required,

where the feature projections lead to more compact common representations,

by incorporating intra-modality and inter-modality relations from vision and

language modalities. The introduced common space is an intermediate that

implicitly measures the cross-modal similarities between image and text se-

quence sample pairs. Intuitively, the multimodality of documents require

multimodal reasoning over multimodal inputs. For instance, some types of

documents such as handwriting categories are mainly not recognizable by

OCR algorithms, which leads to losing textual information, and thus, se-

mantic meaning. Thus, the visual information within the image regions of

the document should be strongly emphasized. In the meantime, some type

of documents such as file folder category do not contain any visual spatial

information,in which case a stronger emphasis on the textual information

within the language cues is highly required.

To address the heterogeneity gap and the lack of closer interactions be-

tween image regions and text sequences within and across vision-language

modalities, we propose a cross-modal contrastive vision-language pre-training

model by learning cross-modal representations as a prior in a unified pre-

training network. To encourage cross-modal learning, we model intra-modality
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and inter-modality representations between the cues of the vision-language

modalities in the pre-training stage. We design an Inter-Modality Cross-

Attention module denoted as (InterMCA) to capture relevant features from

image regions and semantic meaning from text sequences. We aim to ensure

that features from vision and language modalities map to closer points in

the joint embedding space. Nevertheless, existing cross-modal document un-

derstanding approaches lack an explicit measure which ensures that similar

features from the same modality stay close in the joint embedding space.

We assume that if similar features from the same category of each modality

map to distant points in the joint embedding space, then the embeddings

generated within vision and language modalities will lack semantically en-

riched information, and thus, will generalize badly for downstream tasks. As

a remedy, we introduce intra-modality representation which is carried within

an Intra-Modality Self-Attention module denoted as (IntraMSA). This mod-

ule is devoted to constructing intra-modality relations within each modality

according to the self-attention weights of image regions and text sequences.

Moreover, leveraging cross-modal relations through the InterMCA and

IntraMSA attention modules require a cross-modal learning objective. In

the pre-training stage, we propose to train the network with a combinato-

rial cross-modal contrastive learning loss, which aims to simultaneously learn

visual-textual features that represent document data in a more efficient man-

ner, than direct adoption of a uni-modal contrastive loss for vision or lan-

guage only modalities. For the downstream application, we run uni-modal
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inference on top of the generated cross-modal embeddings to perform doc-

ument classification. The superior performance on three document datasets

demonstrates that the proposed cross-modal learning network, denoted as

VLCDoC, can lead to learn meaningful cross-modal representations. The

main contributions of this work are summarized as follows:

• We design a unified network for cross-modal representation learning.

Our network consists of leveraging two flexible extra levels of cross-

modal interactions through InterMCA and IntraMSA attention mod-

ules, to capture high-level interactions between visual-language cues in

document images. The proposed VLCDoC approach shows its superi-

ority over the uni-modal methods.

• We propose a cross-modal contrastive learning objective to further ex-

plore the relations between vision and language cues. Comparing to

the classic uni-modal contrastive learning, the proposed cross-modal

contrastive loss allows to learn and align the feature representations

within and across vision-language modalities.

• Under a fair comparison setting, our VLCDoC demonstrates a good

generality among vision-language based approaches on the benchmark

document datasets, and enables to learn robust and domain-agnostic

feature representations for document classification.

• We show that the vision transformer-based architecture used as a back-
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bone of the vision modality in our VLCDoC network can achieve com-

parable performance when pre-trained on fewer data.

2. Related Work

2.1. Multimodal Document Understanding

Deep learning methods have shown great performance in the field of CV

and NLP. Specifically, they have been extensively applied to document un-

derstanding such as document classification [2, 5], table detection and recog-

nition [6, 7], document visual question answering [8]. Since documents are

multimodal, they require multimodal reasoning over multimodal inputs that

are mapped into a joint embedding space. Earlier attempts have focused

on shallow cross-modal fusion methods to leverage visual, textual, and/or

layout information into a joint embedding space [9, 10, 11]. Yang et al. [9]

proposed a multimodal, fully convolutional network to extract meaningful

semantic structures from document images. Based on a graph convolution

based model, Liu et al. [10] combined textual and visual information pre-

sented in visually rich documents to perform entity recognition on document

data. Zhang et al. [11] proposed a multimodal framework for simultane-

ous text reading and information extraction in visually rich document for

document understanding. By utilizing the graphical property of business

documents, Raja et al. [6] employed deep neural networks for table structure

recognition. Madhav et al. [7] utilized an end-to-end trainable cascade deep

architecture for table detection in document images. Olivier et al. [8] pro-
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posed a document retriever model for answering questions on handwritten

document image collections.

2.2. Multimodal Document Pre-training

Multimodal document pre-training has seen increased attention recently

as it allows to train semantically meaningful embeddings as a prior to a

learnable downstream task. The mechanisms used to leverage features from

document modalities differ one from another. LayoutLMv1 [12] jointly mod-

els interactions between text and layout information across document images

by adding 2D word position in the language representation to better align the

layout information with the semantic representation. LayoutLMv2 [13] lever-

ages vision, language, and layout modalities in a cross-modal pre-training

scheme for a better cross-modality interaction. In LayoutLMv3 [14], the au-

thors propose a joint multimodal approach to model the interaction between

textual, visual, and layout information in a unified multimodal pre-training

network, with different pre-text tasks for a better generality to image-centric

and text-centric downstream document AI tasks. Besides, SelfDoc [2] exploits

cross-modal learning in the pre-training stage to perform a task-agnostic

framework to model information across textual, visual, and layout infor-

mation modalities without requiring document data annotation. In Doc-

Former [5], the authors encourage multimodal interaction using a multimodal

transformer architecture to perform visual document understanding.

Although these works employ visual, textual, and layout information for
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document pre-training, and often achieve superior performance, they have

several limitations in real-world scenarios: (1) When performing cross-modal

document classification during inference, the image-text sample pairs need to

be fed to the fusion modules to calculate the prediction scores to classify doc-

uments, which remains computationally expensive. (2) To model high-level

interactions between image regions and text sequences, in contrast to the

previous related works that leverage different modalities into a joint embed-

ding space, align them on the final embedding level, and thus, fail to model

fine-grained interactions between the different modalities, our proposed VL-

CDoC considers only visual-textual information, and exploits cross-modal

representation learning by incorporating intra- and inter-modality relations.

Beyond that, we introduce cross-modal contrastive learning as a pre-training

objective for effective cross-modality representation learning.

2.3. Vision-Language Alignment

A broad category of pre-training techniques are those that use contrastive

losses, which have been used in a wide range of CV applications like image-

text similarity, and cross-modal retrieval [15, 16]. Such methods aim at

mapping text and images into a common space, where semantic similar-

ity across different modalities can be learned by ranking-based contrastive

losses [17, 18, 19]. While dealing with vision-language sample pairs, though

individual samples may demonstrate inherent heterogeneity in their content,

they are usually coupled with each other based on some higher-level concepts
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such as their categories. This shared information can be useful in measur-

ing semantics of samples across modalities in a relative manner. Verma et

al. [20] analyzed the degree of specificity in the semantic content of a sam-

ple in the vision modality with respect to semantically similar samples in

the language modality. Krishnan et al. [21] measured the similarity score

between the words distributions across two document images, by detecting

patterns of text re-usages across documents written by different individu-

als irrespective of the minor variations in word forms, word ordering, layout

or paraphrasing of the content. Different from the recent research, we pro-

pose intra-modality and inter-modality alignment objectives to ensure that

samples with semantically similar content stay close in the common rep-

resentation space, regardless of the modality, to emphasize the interaction

and agreement between the visual regions and the semantic meaning of text

sequences, as well as to intensify the inner-modality information, by simul-

taneously preserving the original features and establishing inner-interactions

within each modality.

2.4. Attention Mechanism

The attention mechanism has stimulated interest in the domain of deep

learning, it was adopted to learn to attend to the most relevant regions of the

input space in order to assign different weights to different regions. It was

first proposed by Bahdanau et al. [22] for neural machine translation. The

mechanism is firstly used for machine translation where the most relevant
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Figure 2: Overview of the proposed cross-modal contrastive learning method. The network
is composed of InterMCA and IntraMSA modules with flexible attention mechanisms to
learn cross-modal representations in a cross-modal contrastive learning fashion.

words for the output often occur at similar positions in the input sequence.

Specifically, self-attention, and co-attention learning has seen increased in-

terest in the field of multimodal vision-language learning such as, document

understanding [2, 5], VQA [23, 24], and also image captioning [9, 25], aim-

ing at learning the internal relations in a text sentence or in an image. To

model the internal relationships among different modalities, we adopt the

contextualized attention mechanism from NLP [26] to improve the location

accuracy of a document image region in the vision modality for the desired

text sequence in the language modality. Our proposal highlights both the

cross-modal co-attention (InterMCA), and internal self-attention (IntraMSA)

mechanisms which are integrated in the proposed model, which means that

self-attention and co-attention are integrated in the proposed model.

11



3. Methodology

Figure 2 shows the overall architecture of the proposed cross-modal net-

work. VLCDoC is an encoder-only transformer-based architecture trained

in an end-to-end fashion. It has two main modalities to perform visual-

textual feature extraction. VLCDoC enforces deep multimodal interaction

in transformer layers using a cross-modal attention module. The VLCDoC

architecture network consists of two main schemes: one contrastive learning

branch for cross-modal representation learning, and one cross-entropy learn-

ing branch for classifier learning. This feature learning strategy aims to learn

a feature space which has the property of intra-class compactness and inter-

class separability, while the classifier learning branch is expected to learn a

domain-agnostic classifier with less bias based on the discriminative features

obtained from the encoder branch.

3.1. Model Architecture

3.1.1. Visual Features

To extract visual embeddings, we follow the original pre-trained vision

transformer architecture ViT-B/16 [27] as a backbone. Let 𝑣𝑣𝑖𝑠𝑛 ∈ R𝐻×𝑊×𝐶 be

the document image. We reshape it into a sequence of flattened 2𝐷 patches

𝑣𝑣𝑖𝑠𝑛𝑝 ∈ R𝑁×(𝑃2·𝐶), where (𝐻,𝑊) is the resolution of the document image,

𝐶 = 3 is the number of channels, (𝑃, 𝑃) is the resolution of each document

patch, and 𝑁 = 𝐻𝑊/𝑃2 is the resulting number of patches, which serve as the

input sequence length for the transformer encoder. The patches obtained are
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then flattened and mapped to 𝑑 dimensions as the hidden embedding size.

The resulting visual embeddings are then represented as 𝑉 = 𝑣𝑖
𝑣𝑖𝑠𝑛

∈ R𝑑𝑣𝑖𝑠𝑛 ,

where 𝑑𝑣𝑖𝑠𝑛 is a 2𝐷 vector.

3.1.2. Textual Features

To extract textual embeddings, we first extract the text 𝑡𝑙𝑎𝑛𝑔 within docu-

ment images via an off-the shelf optical character recognition (OCR) system,

e.g. Tesseract OCR1. The input sequences extracted with the OCR are fur-

ther fed into the pre-trained BERT𝐵𝑎𝑠𝑒 uncased encoder [28]. The resulting

textual embeddings are then represented as 𝑇 = 𝑡𝑖
𝑙𝑎𝑛𝑔

∈ R𝑑𝑙𝑎𝑛𝑔 , where 𝑑𝑙𝑎𝑛𝑔 is

1https://github.com/tesseract-ocr/tesseract
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a 2𝐷 vector of the same size as 𝑑𝑣𝑖𝑠𝑛. This way, we ensure that the visual

and the textual embeddings are of the same shape.

3.2. Cross-Modal Alignment

In this subsection, we introduce the InterMCA and IntraMSA attention

modules that capture intrinsic patterns by modeling the inter-modality and

intra-modality relationships for image regions and texts. Specifically, our

proposed attention modules are transformer-based architectures as in [26].

It consists of a multi-head self-attention sub-layer, and a position-wise feed-

forward sub-layer 𝑓𝐹𝐹 . Meanwhile, residual connections followed by the layer

normalization 𝑓𝐿𝑁 are also applied around each of the two sub-layers. In

the multi-head self-attention sub-layer, the attention is calculated ℎ times,

making it to be multi-headed. This is achieved by projecting the queries Q,

keys K, and values V ℎ times by using different learnable linear projections.

3.2.1. Inter-Modality Alignment

The inter-modality cross-attention module InterMCA aims to enhance

the cross-modal features by embracing cross-modal interactions across im-

age regions and texts. This module aims to transfer the salient informa-

tion from one modality to another as illustrated in the Figure 3. Let V𝑙 =

{𝑣1, 𝑣2, ..., 𝑣𝑚}, L𝑙 = {𝑙1, 𝑙2, ..., 𝑙𝑚} be the sets of intermediate visual and tex-

tual features at the 𝑙-th layer of the vision and language modalities respec-

tively, where 𝑣𝑖 ∈ R1×𝑑 𝑓 , 𝑙𝑖 ∈ R1×𝑑 𝑓 , and V ∈ R𝑚×𝑑 𝑓 , L ∈ R𝑚×𝑑 𝑓 . Note that

the visual-textual features have the same dimensional feature vector 𝑑 𝑓 . To
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accomplish cross-modal interaction, we apply at first dot-product attention

to combine the queries of each modality with the keys of the other. The

weighted sum of the value of each modality is computed as:

InterMCAL→V(V𝑙) = softmax

(
QV𝑙K>

L𝑙

√
𝑑𝑘

)
VL𝑙 (1)

InterMCAV→L(L𝑙) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥

(
QL𝑙K>

V𝑙

√
𝑑𝑘

)
VV𝑙 (2)

In this way, we emphasize the interaction and agreement between the visual

regions and the semantic meaning of texts. The attention weights are then

sent into the feed-forward sub-layer. Finally, we get the output features of

the next layer of the vision modality V𝑙+1 computed as:

V𝑙
𝐴𝑡𝑡 = 𝑓𝐿𝑁V (InterMCAL→V(V𝑙) +V𝑙) (3)

V𝑙+1 = 𝑓𝐿𝑁V ( 𝑓𝐹𝐹 (V𝑙
𝐴𝑡𝑡) +V𝑙

𝐴𝑡𝑡) (4)

Similarly, the output features L𝑙+1 of the language modality are computed:

L𝑙
𝐴𝑡𝑡 = 𝑓𝐿𝑁L (InterMCAV→L(L𝑙) + L𝑙) (5)

L𝑙+1 = 𝑓𝐿𝑁L ( 𝑓𝐹𝐹 (L𝑙
𝐴𝑡𝑡) + L𝑙

𝐴𝑡𝑡) (6)

Further, the outputs of each vision and language InterMCA modules are

subsequently fed into the vision and language IntraMSA modules.
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3.2.2. Intra-Modality Alignment

The IntraMSA attention module illustrated in the Figure 3, aims to up-

date the vision and language information and to capture inner-modality at-

tention weights. For each modality, the information is updated according

to a feature fusion scheme. At first, we perform element-wise product to

the attention flow V𝑙+1 with the the visual region features V𝑙 , then after a

residual connection, features are fused by a linear additive function to yield

the final updated visual information. To keep the dimension of the updated

information consistent, a fully connected 𝑓𝐹𝐶 layer is employed. The updated

textual information is computed likewise, following the equations:

V̂ = 𝑓𝐹𝐶 ((V𝑙+1 � V𝑙) +V𝑙) (7)

L̂ = 𝑓𝐹𝐶 ((L𝑙+1 � L𝑙) + L𝑙) (8)

After updating original features based on cross-modal interactions, these fea-

tures are fed into the transformer unit to intensify the inner-modality infor-

mation, to preserve the original features and to establish inner-interactions

simultaneously. Following the Equations 1, 2, we have:

IntraMSAV→V = softmax
©­«
Q
V̂

𝑙K>
V̂

𝑙

√
𝑑𝑘

ª®¬VV̂
𝑙 (9)

IntraMSAL→L = softmax
©­«
Q
L̂
𝑙K>

L̂
𝑙

√
𝑑𝑘

ª®¬VL̂
𝑙 (10)
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Figure 4: The proposed cross-modal contrastive learning objective

These two modules can be stacked repeatedly, enabling to explore further

latent intra- and inter-modality alignments between image regions and texts.

3.3. Cross-Modal Contrastive Learning

We design a vision-language contrastive loss to force samples from lan-

guage and vision that are semantically related to be closer. Besides, a projec-

tion head is implemented on top of the IntraMSA and InterMCA modules to

map the image and text representations into a vector representation so that

the two training schemes do not interfere with each other. The projection

head is implemented as a nonlinear multiple-layer perceptron (MLP) with

one hidden layer, as it is more suitable for contrastive learning [29]. Then,
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𝐿2 normalization is applied to the visual-textual embeddings so that the in-

ner product between features can be used as distance measurements. In the

following parts, we denote cross-modal contrastive learning as CrossCL.

3.3.1. Intra-Modality and Inter-Modality Contrastive Learning

Let {x+
𝑖
} = {𝑥 𝑗 |𝑦 𝑗 = 𝑦𝑖, 𝑖 ≠ 𝑗}, {𝑡+

𝑖
} = {𝑡 𝑗 |𝑦 𝑗 = 𝑦𝑖, 𝑖 ≠ 𝑗} be the sets of all

positive samples from the same class of an anchor image 𝑥𝑖 and an anchor

text 𝑡𝑖 respectively, and {x−
𝑖
} = {𝑥 𝑗 |𝑦 𝑗 ≠ 𝑦𝑖, }, {𝑡−𝑖 } = {𝑡 𝑗 |𝑦 𝑗 ≠ 𝑦𝑖} be the sets

of the remaining negative samples from other classes within the minibatch

N. Not only the pairs (x𝑖, x 𝑗), (t𝑖, t 𝑗) from the same modality should be

mapped to a close location in the joint embedding space (intra-modality),

but also similar samples x𝑖 and t 𝑗 should be mapped in close proximity

(inter-modality). Therefore, the vision modality loss shown on the left of the

Figures 4a, 4b is computed as:

L𝑉 =

𝑁∑︁
𝑖=1

L𝑉→𝑉 (x𝑖) +
𝑁∑︁
𝑖=1

L𝐿→𝑉 (x𝑖) (11)

L𝑉→𝑉 (x𝑖)=
−1

|{x+
𝑖
}|

∑︁
x 𝑗∈{x+

𝑖
}
log

exp(x𝑖 · x 𝑗/𝜏)∑
x𝑘 ,𝑘≠𝑖

exp(x𝑖 · x𝑘/𝜏)︸                                             ︷︷                                             ︸
Intra modality vision loss

(12)

L𝐿→𝑉 (x𝑖)=
−1

|{t+
𝑖
}|

∑︁
t 𝑗∈{t+𝑖 }

log
exp(x𝑖 · t 𝑗/𝜏)∑

t𝑘 ,𝑘≠𝑖 exp(x𝑖 · t𝑘/𝜏)︸                                           ︷︷                                           ︸
Inter modality vision loss

(13)
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where · computes similarity scores between example pairs and 𝜏 is a scalar

temperature hyper-parameter. N is the minibatch size, |{x+
𝑖
}| and |{t+

𝑖
}|

denote the number of positive samples of anchors x𝑖 and t𝑖 respectively.

Similarly, the language modality loss shown on the right of the Figures 4a, 4b

is computed as:

L𝐿 =

𝑁∑︁
𝑖=1

L𝐿→𝐿 (t𝑖) +
𝑁∑︁
𝑖=1

L𝑉→𝐿 (t𝑖) (14)

Therefore, the learning objective is based on four contrastive components

including (𝑉 → 𝑉 , 𝐿 → 𝑉 , 𝐿 → 𝐿, 𝑉 → 𝐿) alignments, is computed as:

L𝐶𝑟𝑜𝑠𝑠𝐶𝐿 = L𝑉→𝑉 + 𝜆L𝐿→𝑉 + L𝐿→𝐿 + 𝜆L𝑉→𝐿 (15)

where 𝜆 is a hyper-parameter to control inter-modality alignment.

4. Experiments

In this section, we evaluate the effectiveness of the proposed method on

low-scale and large-scale document classification datasets.

4.1. Datasets

RVL-CDIP The RVL-CDIP (Ryerson Vision Lab Complex Document In-

formation Processing) dataset is a subset of the IIT-CDIP Test Collection

presented in [30]. It consists of gray-scale labeled documents split into 16

classes. The dataset is split into 320K training documents, 40K documents
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documents for validation and test sets. For notation simplicity, we denote

the dataset as RVL-CDIP.

Tobacco-3482 The Tobacco-3482 dataset is a smaller sample containing

3482 gray-scale document images presented in [31]. This dataset is formed

by documents belonging to 10 classes not uniformly distributed. For simplic-

ity, we denote the dataset as Tobacco.

NIST Special Database 6 The Nist-tax form [32] dataset is composed of

structured forms of 5595 pages of binary, black-and-white images of synthe-

sized documents containing hand-print and split into 20 different tax forms.

For simplicity, we denote the dataset as NIST.

4.2. Experimental Settings

The proposed VLCDoC method is implemented in Tensorflow with 4

NVIDIA GeForce 12Gb RTX 2080Ti GPU. For the vision modality, docu-

ments are resized into a fixed size of (H, W)=(224, 224). The image region

feature vector extracted by the ViT-B/16 backbone is of 𝑑𝑣𝑖𝑠𝑛=(197, 768).

The final vision representation which is fed into the projection head is of

dimension 𝑑=768. As for the textual data, we tokenize the plain text 𝑡𝑙𝑎𝑛𝑔

using a word-peace tokenizer to get 𝑡𝑡𝑜𝑘 . Each input sequence is expected

to start with a [𝐶𝐿𝑆] token, and should end with a [𝑆𝐸𝑃] token. The 𝑡𝑡𝑜𝑘

is then represented as: 𝑡𝑡𝑜𝑘 = [𝐶𝐿𝑆], 𝑡𝑡𝑜𝑘1 , 𝑡𝑡𝑜𝑘2 , ..., 𝑡𝑡𝑜𝑘𝑛 , [𝑆𝐸𝑃], where 𝑛=197

is the maximum sequence length. For each document, if 𝑛 >197, the input

sequence is truncated so that it fits the desired length. For sequences that
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Table 1: Ablation study on VLCDoC on cross-modality attention components, pre-trained
on Tobacco dataset

Pre-training setting IntraMSA InterMCA #Parameters Accuracy(%)

-w/o language modality

198M 85.71√
201M 86.66√
209M 87.20√ √
217M 90.94

-w/o vision modality

198M 86.01√
201M 86.31√
209M 87.50√ √
217M 90.62

are shorter than 𝑛 <197, they are padded until they are 𝑛 =197 long. In

the pre-training phase, the model is trained using AdamW optimizer with a

learning rate of 2e-5, linear warmup ratio to 0.1 and a linear decay. We set

the batch size to 64 and we use the pre-trained weights of both ViT-B/16

and BERT𝐵𝑎𝑠𝑒 uncased backbones. We conduct pre-training for 100 epochs

for the RVL-CDIP and Tobacco datasets. We fine-tune our network on 50

epochs for all datasets, we use Adam optimizer with learning rate of 5e-5.

For Tobacco and NIST datasets, we split the original sets to 80% for train-

ing, and 10% for validation and test. The temperature parameter 𝜏 is set to

0.1, and 𝜆 is set to 0.5. Note that we didn’t use any type of data augmen-

tation during pre-training, and we kept the OCRed text as is without any

pre- or post-processing. Note that the InterMCA and IntraMSA modules

in our method are flexibly stacked two times to enhance the modeling of
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Table 2: Top-1 accuracy (%) comparison results of our proposed CrossCL loss against the
SCL loss on Tobacco dataset

Model Modality CrossCL(%) SCL(%)

VLCDoC Vision 90.94 89.88
Language 90.62 89.29

inter-modality and intra-modality relations during pre-training. We split the

query, key, and value vectors of the visual features and textual features into

four heads and concatenate the results in different sub-spaces.

4.3. Ablation Study

We conduct ablation studies to characterize our VLCDoC network on

the low-scale Tobacco dataset. We analyze the following contributions of: i)

validating the effectiveness of the proposed InterMCA and IntraMSA atten-

tion modules in learning generic cross-modal representations, ii) investigat-

ing whether contrastive learning enhances the cross-modal representations,

resulting in performance gain in terms of classification accuracy, iii) illustrat-

ing the generality and robustness of the proposed VLCDoC network.

4.3.1. Effects of Attention Mechanisms

To investigate the effectiveness of the attention mechanisms used in our

VLCDoC model, we evaluate the performance of the learned cross-modal

representations w/ and w/o the attention modules. Note that the evaluation

protocol is uni-modal based. At first, we consider the scheme where the vision

and language modalities are pre-trained independently. In Table 1, we ob-
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Table 3: Cross-dataset test on datasets with different size and document types. Tob,
RVL, and Nist denote Tobacco, RVL-CDIP, and Nist-tax form benchmark datasets. Tob
→ RVL denotes pre-train on Tobacco, and test on RVL-CDIP.

Model Accuracy (%)

Tob → RVL RVL → Tob RVL → Nist

w/o language modality
- EAML [33] 78.89 84.82 -
- VLCDoC 79.04 89.73 99.99

w/o vision modality
- EAML [33] 79.06 83.72 -
- VLCDoC 81.96 89.88 99.99

serve a significant drop to 85.71%, and 86.01% in classification performance

when removing both attention mechanisms in the vision and language modal-

ities respectively. When removing only the InterMCA module, we see that

our model manages to improve slightly the performance of both modalities

to 86.66% and 86.31% for the vision-language modalities. Further, removing

the IntraMSA and keeping only the InterMCA module enables multimodal

pre-training in an end-to-end fashion. The reported results in Table 1 show

that our model gains in performance, and achieves the best performance with

90.94%, 90.62% top-1 accuracy for the vision and language modalities.

The improvement of the classification accuracy is attributed to the flexible

attention flows adopted in both the InterMCA and IntraMSA modules, which

have shown their effectiveness and capability to enhance vision-language rela-

tions by capturing the relevant semantic information of images and sentences.

The results demonstrate the effectiveness of cross-modal learning and the
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importance of both attention modules in learning more effective cross-modal

representations during the pre-training stage.

4.3.2. Effects of Cross-Contrastive Learning

The Cross-modal Contrastive Loss (CrossCL) contains two components:

intra- and inter-modality alignments. We show the effects of CrossCL on

the proposed method against the standard supervised contrastive learning

(SCL) loss. Table 2 shows that the CrossCL loss has a positive impact on

the results. The VLCDoC with CrossCL loss yields the best performance

gain compared to VLCDoC with the SCL loss. This indicates the impor-

tance of CrossCL by enforcing the compactness of intra-class representations

(intra-modality), while separating inter-class features by contrasting positive

and negative sample pairs within and across each modality. Note that, as

described in Equation 15, the CrossCL can be vision cue-based or language

cue-based, thus we have two different CrossCL presented in Table 2.

4.3.3. Cross-Dataset Test

To illustrate the generality and the robustness of the learned cross-modal

features, we validate our VLCDoC model on document classification datasets

with different size and document types. We refer as the cross-dataset test to

the process of pre-training our VLCDoC on dataset 𝐴, and fine-tune it and

test it on dataset 𝐵. The motivation behind is to confirm whether our model

displays a good generality in terms of the document classification task. Since

there is no publicly available cross-document datasets for this specific task,

24



we evaluate the ability of our model to perform document classification on a

new set of documents that had not been seen by our model during the pre-

training phase. For example, as denoted in the Table 3, which refers to the

cross-dataset test, RVL-CDIP→Tobacco denotes that the pre-training stage

is firstly conducted on the RVL-CDIP dataset, then the fine-tuning stage

of the previously pre-trained model is conducted on the Tobacco dataset.

Finally, the test phase is conducted on the Tobacco dataset as well. Note

that during the fine-tuning stage, we only train linear classifiers on the top of

the final embeddings of the vision and language modalities of our pre-trained

model, with the parameters of the rest of the layers freezed. Thus, even

though the document categories are different between the dataset 𝐴 used for

pre-training and test dataset 𝐵 used for fine-tuning and test, we can still

evaluate our model on dataset 𝐵. The results confirm that our approach

leads to a model with a better generality compared to prior works.

As such, we compare our model with the related work EAML [33]. We

first pre-train the model on Tobacco dataset, then we conduct fine-tuning

and test on the RVL-CDIP dataset. The reported results in Table 3 show

that we slightly outperform EAML on both vision and language modalities.

Even-though EAML is an ensemble network trained with a different set-

ting, based on vision, language, and fusion modalities, the results confirm

that our model benefits from cross-modal pre-training with small amount of

document data, achieving better performance with only vision and language

modalities. Following similar protocol, we pre-train our encoder on RVL-
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CDIP, and then conduct fine-tuning and test on Tobacco and NIST datasets

with fewer document data. We clearly see that our model outperforms the

work EAML with a significant margin of 4.91% and of 6.16% for vision and

language modalities respectively. As for NIST dataset, the results achieve

99.99% classification accuracy for both modalities. These results demon-

strate that our model displays a good generality which enables to learn a

robust and domain-agnostic feature representation for classifying documents

with different document types and document data size.

4.4. Results

The comparison between the proposed VLCDoC network and existing

methods on the large-scale RVL-CDIP document classification dataset is

presented in Table 4. The compared methods cover various training strate-

gies with different modalities used to perform document classification. These

methods include vision-only, language-only, vision-language, and vision-language-

layout methods. Although our VLCDoC network learns feature space with

vision and language cues, it only uses uni-modality (either vision or language)

to classify document during inference. In Table 4, we can see that our VL-

CDoC model achieves the best performance with 92.64% and 91.37% of top-1

accuracy for using the vision or language modality respectively even com-

pared to the methods that use the fusion of visual and language modalities.

Therefore, the results reported demonstrate that our proposed approach out-

performs all the methods that do not require any supplementary information
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Table 4: Top-1 accuracy (%) comparison results of different document classification meth-
ods evaluated on the of RVL-CDIP dataset. V+L denotes vision+language modalities

Method Pre-Train Data Accuracy(%) #Params

vision methods

VGG-16 [34] 320k 90.31 138M
ResNet-50 [34] 320k 91.13 -
Ensemble [35] 320k 92.21 -
DiT𝐵𝑎𝑠𝑒 [36] 320k 92.11 87M

(language+layout) methods

BERT𝐵𝑎𝑠𝑒 [28] - 89.81 110M
RoBERTa𝐵𝑎𝑠𝑒 [37] - 90.06 125M
LayoutLM𝐵𝑎𝑠𝑒 [12] 11M 91.78 113M

(vision+language) methods

w/o language
- Multimodal [38] 320k 89.1 -
- Ensemble [39] 320k 91.45 -
- EAML [33] 320k 90.81 -
w/o vision
- Multimodal [38] 320k 74.6 -
- Ensemble [39] 320k 82.23 -
- EAML [33] 320k 88.80 -

VLCDoC (V+L) w/o language 320k 92.64 217M
VLCDoC (V+L) w/o vision 320k 91.37 217M

(vision+language+layout) methods

SelfDoc [2] 320k 93.81 -
LayoutLM𝐵𝑎𝑠𝑒 [12] 11M 94.42 160M
TILT𝐵𝑎𝑠𝑒 [40] 1M 95.25 230M
LayoutLMv2𝐵𝑎𝑠𝑒 [13] 11M 95.25 200M
LayoutLMv3𝐵𝑎𝑠𝑒 [14] 11M 95.44 133M
DocFormer𝐵𝑎𝑠𝑒 [5] 5M 96.17 183M
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such as layout information as used in the prior related works [12, 13, 14, 2, 5].

Meanwhile, it achieves competitive results against the methods that include

layout information in the pre-training setting.

5. Conclusion and Future Work

In this paper, we have proposed a novel cross-modal representation learn-

ing model for document classification, which models the intra- and inter-

modality relations between vision-language cues via cross-modal contrastive

learning. We have introduced InterMCA and IntraMSA attention mecha-

nisms which incorporate visual-textual features to further improve the cross-

modal representations. We have performed a detailed analysis and evaluation

on each module, demonstrating the suitability of the proposed approach. We

have demonstrated a good generality of our multimodal transformer-based

model to the document classification task, enabling to classify documents in

different domains. We will push forward two research lines for the future.

On the one hand, we will carry on further research on the integration of a

third layout modality in our transformer-based multimodal model. As prior

related works rely mainly on the three vision, language, and layout modal-

ities to extract better cross-modality relations, we would like to propose a

better solution for layout integration in our vision-language model. On the

other hand, we would like to explore new pre-text task strategies to improve

document understanding in a pretrain-to-finetune paradigm. Thus, we will

further tune our model for different downstream applications related to doc-
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ument AI with more challenging heterogeneous data.
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