|
Records |
Links |
|
Author |
Olivier Lefebvre; Pau Riba; Charles Fournier; Alicia Fornes; Josep Llados; Rejean Plamondon; Jules Gagnon-Marchand |
|
|
Title |
Monitoring neuromotricity on-line: a cloud computing approach |
Type |
Conference Article |
|
Year |
2015 |
Publication |
17th Conference of the International Graphonomics Society IGS2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
The goal of our experiment is to develop a useful and accessible tool that can be used to evaluate a patient's health by analyzing handwritten strokes. We use a cloud computing approach to analyze stroke data sampled on a commercial tablet working on the Android platform and a distant server to perform complex calculations using the Delta and Sigma lognormal algorithms. A Google Drive account is used to store the data and to ease the development of the project. The communication between the tablet, the cloud and the server is encrypted to ensure biomedical information confidentiality. Highly parameterized biomedical tests are implemented on the tablet as well as a free drawing test to evaluate the validity of the data acquired by the first test compared to the second one. A blurred shape model descriptor pattern recognition algorithm is used to classify the data obtained by the free drawing test. The functions presented in this paper are still currently under development and other improvements are needed before launching the application in the public domain. |
|
|
Address |
Pointe-à-Pitre; Guadeloupe; June 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IGS |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ LRF2015 |
Serial |
2617 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes; Anjan Dutta |
|
|
Title |
Large-scale Graph Indexing using Binary Embeddings of Node Contexts |
Type |
Conference Article |
|
Year |
2015 |
Publication |
10th IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
9069 |
Issue |
|
Pages |
208-217 |
|
|
Keywords |
Graph matching; Graph indexing; Application in document analysis; Word spotting; Binary embedding |
|
|
Abstract |
Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations in terms of feature vectors. Retrieving a query graph from a large dataset of graphs has the drawback of the high computational complexity required to compare the query and the target graphs. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. In this paper we propose a fast indexation formalism for graph retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Hence, each attribute counts the length of a walk of order k originated in a vertex with label l. Each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in a handwritten word spotting scenario in images of historical documents. |
|
|
Address |
Beijing; China; May 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
C.-L.Liu; B.Luo; W.G.Kropatsch; J.Cheng |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-319-18223-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GbRPR |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLF2015a |
Serial |
2618 |
|
Permanent link to this record |
|
|
|
|
Author |
Youssef El Rhabi; Simon Loic; Brun Luc |
|
|
Title |
Estimation de la pose d’une caméra à partir d’un flux vidéo en s’approchant du temps réel |
Type |
Conference Article |
|
Year |
2015 |
Publication |
15ème édition d'ORASIS, journées francophones des jeunes chercheurs en vision par ordinateur ORASIS2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Augmented Reality; SFM; SLAM; real time pose computation; 2D/3D registration |
|
|
Abstract |
Finding a way to estimate quickly and robustly the pose of an image is essential in augmented reality. Here we will discuss the approach we chose in order to get closer to real time by using SIFT points [4]. We propose a method based on filtering both SIFT points and images on which to focus on. Hence we will focus on relevant data. |
|
|
Address |
Amiens; France; June 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ORASIS |
|
|
Notes |
DAG; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLL2015 |
Serial |
2626 |
|
Permanent link to this record |
|
|
|
|
Author |
Nuria Cirera; Alicia Fornes; Josep Llados |
|
|
Title |
Hidden Markov model topology optimization for handwriting recognition |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
626-630 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a method to optimize the topology of linear left-to-right hidden Markov models. These models are very popular for sequential signals modeling on tasks such as handwriting recognition. Many topology definition methods select the number of states for a character model based
on character length. This can be a drawback when characters are shorter than the minimum allowed by the model, since they can not be properly trained nor recognized. The proposed method optimizes the number of states per model by automatically including convenient skip-state transitions and therefore it avoids the aforementioned problem.We discuss and compare our method with other character length-based methods such the Fixed, Bakis and Quantile methods. Our proposal performs well on off-line handwriting recognition task. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CFL2015 |
Serial |
2639 |
|
Permanent link to this record |
|
|
|
|
Author |
Juan Ignacio Toledo; Jordi Cucurull; Jordi Puiggali; Alicia Fornes; Josep Llados |
|
|
Title |
Document Analysis Techniques for Automatic Electoral Document Processing: A Survey |
Type |
Conference Article |
|
Year |
2015 |
Publication |
E-Voting and Identity, Proceedings of 5th international conference, VoteID 2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
139-141 |
|
|
Keywords |
Document image analysis; Computer vision; Paper ballots; Paper based elections; Optical scan; Tally |
|
|
Abstract |
In this paper, we will discuss the most common challenges in electoral document processing and study the different solutions from the document analysis community that can be applied in each case. We will cover Optical Mark Recognition techniques to detect voter selections in the Australian Ballot, handwritten number recognition for preferential elections and handwriting recognition for write-in areas. We will also propose some particular adjustments that can be made to those general techniques in the specific context of electoral documents. |
|
|
Address |
Bern; Switzerland; September 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
VoteID |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TCP2015 |
Serial |
2641 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes |
|
|
Title |
Handwritten Word Spotting by Inexact Matching of Grapheme Graphs |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
781 - 785 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a graph-based word spotting for handwritten documents. Contrary to most word spotting techniques, which use statistical representations, we propose a structural representation suitable to be robust to the inherent deformations of handwriting. Attributed graphs are constructed using a part-based approach. Graphemes extracted from shape convexities are used as stable units of handwriting, and are associated to graph nodes. Then, spatial relations between them determine graph edges. Spotting is defined in terms of an error-tolerant graph matching using bipartite-graph matching algorithm. To make the method usable in large datasets, a graph indexing approach that makes use of binary embeddings is used as preprocessing. Historical documents are used as experimental framework. The approach is comparable to statistical ones in terms of time and memory requirements, especially when dealing with large document collections. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 600.061; 602.006 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLF2015b |
Serial |
2642 |
|
Permanent link to this record |
|
|
|
|
Author |
David Aldavert; Marçal Rusiñol; Ricardo Toledo; Josep Llados |
|
|
Title |
A Study of Bag-of-Visual-Words Representations for Handwritten Keyword Spotting |
Type |
Journal Article |
|
Year |
2015 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
18 |
Issue |
3 |
Pages |
223-234 |
|
|
Keywords |
Bag-of-Visual-Words; Keyword spotting; Handwritten documents; Performance evaluation |
|
|
Abstract |
The Bag-of-Visual-Words (BoVW) framework has gained popularity among the document image analysis community, specifically as a representation of handwritten words for recognition or spotting purposes. Although in the computer vision field the BoVW method has been greatly improved, most of the approaches in the document image analysis domain still rely on the basic implementation of the BoVW method disregarding such latest refinements. In this paper, we present a review of those improvements and its application to the keyword spotting task. We thoroughly evaluate their impact against a baseline system in the well-known George Washington dataset and compare the obtained results against nine state-of-the-art keyword spotting methods. In addition, we also compare both the baseline and improved systems with the methods presented at the Handwritten Keyword Spotting Competition 2014. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.055; 600.061; 601.223; 600.077; 600.097 |
Approved |
no |
|
|
Call Number |
Admin @ si @ ART2015 |
Serial |
2679 |
|
Permanent link to this record |
|
|
|
|
Author |
J. Chazalon; Marçal Rusiñol; Jean-Marc Ogier |
|
|
Title |
Improving Document Matching Performance by Local Descriptor Filtering |
Type |
Conference Article |
|
Year |
2015 |
Publication |
6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1216 - 1220 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose an effective method aimed at reducing the amount of local descriptors to be indexed in a document matching framework. In an off-line training stage, the matching between the model document and incoming images is computed retaining the local descriptors from the model that steadily produce good matches. We have evaluated this approach by using the ICDAR2015 SmartDOC dataset containing near 25 000 images from documents to be captured by a mobile device. We have tested the performance of this filtering step by using
ORB and SIFT local detectors and descriptors. The results show an important gain both in quality of the final matching as well as in time and space requirements. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CBDAR |
|
|
Notes |
DAG; 600.077; 601.223; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CRO2015a |
Serial |
2680 |
|
Permanent link to this record |
|
|
|
|
Author |
Jean-Christophe Burie; J. Chazalon; M. Coustaty; S. Eskenazi; Muhammad Muzzamil Luqman; M. Mehri; Nibal Nayef; Jean-Marc Ogier; S. Prum; Marçal Rusiñol |
|
|
Title |
ICDAR2015 Competition on Smartphone Document Capture and OCR (SmartDoc) |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1161 - 1165 |
|
|
Keywords |
|
|
|
Abstract |
Smartphones are enabling new ways of capture,
hence arises the need for seamless and reliable acquisition and
digitization of documents, in order to convert them to editable,
searchable and a more human-readable format. Current stateof-the-art
works lack databases and baseline benchmarks for
digitizing mobile captured documents. We have organized a
competition for mobile document capture and OCR in order to
address this issue. The competition is structured into two independent
challenges: smartphone document capture, and smartphone
OCR. This report describes the datasets for both challenges
along with their ground truth, details the performance evaluation
protocols which we used, and presents the final results of the
participating methods. In total, we received 13 submissions: 8
for challenge-I, and 5 for challenge-2. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 601.223; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BCC2015 |
Serial |
2681 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados |
|
|
Title |
Towards Query-by-Speech Handwritten Keyword Spotting |
Type |
Conference Article |
|
Year |
2015 |
Publication |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
501-505 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we present a new querying paradigm for handwritten keyword spotting. We propose to represent handwritten word images both by visual and audio representations, enabling a query-by-speech keyword spotting system. The two representations are merged together and projected to a common sub-space in the training phase. This transform allows to, given a spoken query, retrieve word instances that were only represented by the visual modality. In addition, the same method can be used backwards at no additional cost to produce a handwritten text-tospeech system. We present our first results on this new querying mechanism using synthetic voices over the George Washington
dataset. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.084; 600.061; 601.223; 600.077;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RAT2015b |
Serial |
2682 |
|
Permanent link to this record |