toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Josep Llados; Jaime Lopez-Krahe; Gemma Sanchez; Enric Marti edit  openurl
  Title Interprétation de cartes et plans par mise en correspondance de graphes de attributs Type Conference Article
  Year 2000 Publication (up) 12 Congrès Francophone AFRIF–AFIA Abbreviated Journal  
  Volume 3 Issue Pages 225-234  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference RFIA  
  Notes DAG;IAM Approved no  
  Call Number IAM @ iam @ LLS2000 Serial 1567  
Permanent link to this record
 

 
Author Hana Jarraya; Oriol Ramos Terrades; Josep Llados edit  doi
openurl 
  Title Learning structural loss parameters on graph embedding applied on symbolic graphs Type Conference Article
  Year 2017 Publication (up) 12th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract We propose an amelioration of proposed Graph Embedding (GEM) method in previous work that takes advantages of structural pattern representation and the structured distortion. it models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector, as new signature of AG in a lower dimensional vectorial space. We focus to adapt the structured learning algorithm via 1_slack formulation with a suitable risk function, called Graph Edit Distance (GED). It defines the dissimilarity of the ground truth and predicted graph labels. It determines by the error tolerant graph matching using bipartite graph matching algorithm. We apply Structured Support Vector Machines (SSVM) to process classification task. During our experiments, we got our results on the GREC dataset.  
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ JRL2017b Serial 3073  
Permanent link to this record
 

 
Author Sounak Dey; Anjan Dutta; Josep Llados; Alicia Fornes; Umapada Pal edit   pdf
openurl 
  Title Shallow Neural Network Model for Hand-drawn Symbol Recognition in Multi-Writer Scenario Type Conference Article
  Year 2017 Publication (up) 12th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 31-32  
  Keywords  
  Abstract One of the main challenges in hand drawn symbol recognition is the variability among symbols because of the different writer styles. In this paper, we present and discuss some results recognizing hand-drawn symbols with a shallow neural network. A neural network model inspired from the LeNet architecture has been used to achieve state-of-the-art results with
very less training data, which is very unlikely to the data hungry deep neural network. From the results, it has become evident that the neural network architectures can efficiently describe and recognize hand drawn symbols from different writers and can model the inter author aberration
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ DDL2017 Serial 3057  
Permanent link to this record
 

 
Author Pau Riba; Anjan Dutta; Josep Llados; Alicia Fornes edit   pdf
openurl 
  Title Graph-based deep learning for graphics classification Type Conference Article
  Year 2017 Publication (up) 12th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 29-30  
  Keywords  
  Abstract Graph-based representations are a common way to deal with graphics recognition problems. However, previous works were mainly focused on developing learning-free techniques. The success of deep learning frameworks have proved that learning is a powerful tool to solve many problems, however it is not straightforward to extend these methodologies to non euclidean data such as graphs. On the other hand, graphs are a good representational structure for graphical entities. In this work, we present some deep learning techniques that have been proposed in the literature for graph-based representations and
we show how they can be used in graphics recognition problems
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ RDL2017b Serial 3058  
Permanent link to this record
 

 
Author Adria Rico; Alicia Fornes edit   pdf
openurl 
  Title Camera-based Optical Music Recognition using a Convolutional Neural Network Type Conference Article
  Year 2017 Publication (up) 12th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 27-28  
  Keywords optical music recognition; document analysis; convolutional neural network; deep learning  
  Abstract Optical Music Recognition (OMR) consists in recognizing images of music scores. Contrary to expectation, the current OMR systems usually fail when recognizing images of scores captured by digital cameras and smartphones. In this work, we propose a camera-based OMR system based on Convolutional Neural Networks, showing promising preliminary results  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG;600.097; 600.121 Approved no  
  Call Number Admin @ si @ RiF2017 Serial 3059  
Permanent link to this record
 

 
Author Joan Mas; Alicia Fornes; Josep Llados edit   pdf
doi  openurl
  Title An Interactive Transcription System of Census Records using Word-Spotting based Information Transfer Type Conference Article
  Year 2016 Publication (up) 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 54-59  
  Keywords  
  Abstract This paper presents a system to assist in the transcription of historical handwritten census records in a crowdsourcing platform. Census records have a tabular structured layout. They consist in a sequence of rows with information of homes ordered by street address. For each household snippet in the page, the list of family members is reported. The censuses are recorded in intervals of a few years and the information of individuals in each household is quite stable from a point in time to the next one. This redundancy is used to assist the transcriber, so the redundant information is transferred from the census already transcribed to the next one. Household records are aligned from one year to the next one using the knowledge of the ordering by street address. Given an already transcribed census, a query by string word spotting is applied. Thus, names from the census in time t are used as queries in the corresponding home record in time t+1. Since the search is constrained, the obtained precision-recall values are very high, with an important reduction in the transcription time. The proposed system has been tested in a real citizen-science experience where non expert users transcribe the census data of their home town.  
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 603.053; 602.006; 600.061; 600.077; 600.097 Approved no  
  Call Number Admin @ si @ MFL2016 Serial 2751  
Permanent link to this record
 

 
Author Juan Ignacio Toledo; Alicia Fornes; Jordi Cucurull; Josep Llados edit   pdf
doi  openurl
  Title Election Tally Sheets Processing System Type Conference Article
  Year 2016 Publication (up) 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 364-368  
  Keywords  
  Abstract In paper based elections, manual tallies at polling station level produce myriads of documents. These documents share a common form-like structure and a reduced vocabulary worldwide. On the other hand, each tally sheet is filled by a different writer and on different countries, different scripts are used. We present a complete document analysis system for electoral tally sheet processing combining state of the art techniques with a new handwriting recognition subprocess based on unsupervised feature discovery with Variational Autoencoders and sequence classification with BLSTM neural networks. The whole system is designed to be script independent and allows a fast and reliable results consolidation process with reduced operational cost.  
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 602.006; 600.061; 601.225; 600.077; 600.097 Approved no  
  Call Number TFC2016 Serial 2752  
Permanent link to this record
 

 
Author Anders Hast; Alicia Fornes edit   pdf
doi  openurl
  Title A Segmentation-free Handwritten Word Spotting Approach by Relaxed Feature Matching Type Conference Article
  Year 2016 Publication (up) 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 150-155  
  Keywords  
  Abstract The automatic recognition of historical handwritten documents is still considered challenging task. For this reason, word spotting emerges as a good alternative for making the information contained in these documents available to the user. Word spotting is defined as the task of retrieving all instances of the query word in a document collection, becoming a useful tool for information retrieval. In this paper we propose a segmentation-free word spotting approach able to deal with large document collections. Our method is inspired on feature matching algorithms that have been applied to image matching and retrieval. Since handwritten words have different shape, there is no exact transformation to be obtained. However, the sufficient degree of relaxation is achieved by using a Fourier based descriptor and an alternative approach to RANSAC called PUMA. The proposed approach is evaluated on historical marriage records, achieving promising results.  
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 602.006; 600.061; 600.077; 600.097 Approved no  
  Call Number HaF2016 Serial 2753  
Permanent link to this record
 

 
Author Dimosthenis Karatzas; V. Poulain d'Andecy; Marçal Rusiñol edit   pdf
doi  openurl
  Title Human-Document Interaction – a new frontier for document image analysis Type Conference Article
  Year 2016 Publication (up) 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 369-374  
  Keywords  
  Abstract All indications show that paper documents will not cede in favour of their digital counterparts, but will instead be used increasingly in conjunction with digital information. An open challenge is how to seamlessly link the physical with the digital – how to continue taking advantage of the important affordances of paper, without missing out on digital functionality. This paper
presents the authors’ experience with developing systems for Human-Document Interaction based on augmented document interfaces and examines new challenges and opportunities arising for the document image analysis field in this area. The system presented combines state of the art camera-based document
image analysis techniques with a range of complementary tech-nologies to offer fluid Human-Document Interaction. Both fixed and nomadic setups are discussed that have gone through user testing in real-life environments, and use cases are presented that span the spectrum from business to educational application
 
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.084; 600.077 Approved no  
  Call Number KPR2016 Serial 2756  
Permanent link to this record
 

 
Author Q. Bao; Marçal Rusiñol; M.Coustaty; Muhammad Muzzamil Luqman; C.D. Tran; Jean-Marc Ogier edit   pdf
doi  openurl
  Title Delaunay triangulation-based features for Camera-based document image retrieval system Type Conference Article
  Year 2016 Publication (up) 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords Camera-based Document Image Retrieval; Delaunay Triangulation; Feature descriptors; Indexing  
  Abstract In this paper, we propose a new feature vector, named DElaunay TRIangulation-based Features (DETRIF), for real-time camera-based document image retrieval. DETRIF is computed based on the geometrical constraints from each pair of adjacency triangles in delaunay triangulation which is constructed from centroids of connected components. Besides, we employ a hashing-based indexing system in order to evaluate the performance of DETRIF and to compare it with other systems such as LLAH and SRIF. The experimentation is carried out on two datasets comprising of 400 heterogeneous-content complex linguistic map images (huge size, 9800 X 11768 pixels resolution)and 700 textual document images.  
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.061; 600.084; 600.077 Approved no  
  Call Number Admin @ si @ BRC2016 Serial 2757  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: