|
Records |
Links |
|
Author |
Jaume Gibert; Ernest Valveny |


|
|
Title |
Graph Embedding based on Nodes Attributes Representatives and a Graph of Words Representation. |
Type |
Conference Article |
|
Year |
2010 |
Publication  |
13th International worshop on structural and syntactic pattern recognition and 8th international worshop on statistical pattern recognition |
Abbreviated Journal |
|
|
|
Volume |
6218 |
Issue |
|
Pages |
223–232 |
|
|
Keywords |
|
|
|
Abstract |
Although graph embedding has recently been used to extend statistical pattern recognition techniques to the graph domain, some existing embeddings are usually computationally expensive as they rely on classical graph-based operations. In this paper we present a new way to embed graphs into vector spaces by first encapsulating the information stored in the original graph under another graph representation by clustering the attributes of the graphs to be processed. This new representation makes the association of graphs to vectors an easy step by just arranging both node attributes and the adjacency matrix in the form of vectors. To test our method, we use two different databases of graphs whose nodes attributes are of different nature. A comparison with a reference method permits to show that this new embedding is better in terms of classification rates, while being much more faster. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
In E.R. Hancock, R.C. Wilson, T. Windeatt, I. Ulusoy and F. Escolano, |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-14979-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
S+SSPR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ GiV2010 |
Serial |
1416 |
|
Permanent link to this record |
|
|
|
|
Author |
Jon Almazan; David Fernandez; Alicia Fornes; Josep Llados; Ernest Valveny |


|
|
Title |
A Coarse-to-Fine Approach for Handwritten Word Spotting in Large Scale Historical Documents Collection |
Type |
Conference Article |
|
Year |
2012 |
Publication  |
13th International Conference on Frontiers in Handwriting Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
453-458 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we propose an approach for word spotting in handwritten document images. We state the problem from a focused retrieval perspective, i.e. locating instances of a query word in a large scale dataset of digitized manuscripts. We combine two approaches, namely one based on word segmentation and another one segmentation-free. The first approach uses a hashing strategy to coarsely prune word images that are unlikely to be instances of the query word. This process is fast but has a low precision due to the errors introduced in the segmentation step. The regions containing candidate words are sent to the second process based on a state of the art technique from the visual object detection field. This discriminative model represents the appearance of the query word and computes a similarity score. In this way we propose a coarse-to-fine approach achieving a compromise between efficiency and accuracy. The validation of the model is shown using a collection of old handwritten manuscripts. We appreciate a substantial improvement in terms of precision regarding the previous proposed method with a low computational cost increase. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4673-2262-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICFHR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ AFF2012 |
Serial |
1983 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Josep Llados |


|
|
Title |
The Role of the Users in Handwritten Word Spotting Applications: Query Fusion and Relevance Feedback |
Type |
Conference Article |
|
Year |
2012 |
Publication  |
13th International Conference on Frontiers in Handwriting Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
55-60 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present the importance of including the user in the loop in a handwritten word spotting framework. Several off-the-shelf query fusion and relevance feedback strategies have been tested in the handwritten word spotting context. The increase in terms of precision when the user is included in the loop is assessed using two datasets of historical handwritten documents and a baseline word spotting approach based on a bag-of-visual-words model. |
|
|
Address |
Bari, Italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4673-2262-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICFHR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ RuL2012 |
Serial |
2054 |
|
Permanent link to this record |
|
|
|
|
Author |
Volkmar Frinken; Markus Baumgartner; Andreas Fischer; Horst Bunke |


|
|
Title |
Semi-Supervised Learning for Cursive Handwriting Recognition using Keyword Spotting |
Type |
Conference Article |
|
Year |
2012 |
Publication  |
13th International Conference on Frontiers in Handwriting Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
49-54 |
|
|
Keywords |
|
|
|
Abstract |
State-of-the-art handwriting recognition systems are learning-based systems that require large sets of training data. The creation of training data, and consequently the creation of a well-performing recognition system, requires therefore a substantial amount of human work. This can be reduced with semi-supervised learning, which uses unlabeled text lines for training as well. Current approaches estimate the correct transcription of the unlabeled data via handwriting recognition which is not only extremely demanding as far as computational costs are concerned but also requires a good model of the target language. In this paper, we propose a different approach that makes use of keyword spotting, which is significantly faster and does not need any language model. In a set of experiments we demonstrate its superiority over existing approaches. |
|
|
Address |
Bari, Italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
10.1109/ICFHR.2012.268 |
ISBN |
978-1-4673-2262-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICFHR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ FBF2012 |
Serial |
2055 |
|
Permanent link to this record |
|
|
|
|
Author |
Emanuel Indermühle; Volkmar Frinken; Horst Bunke |


|
|
Title |
Mode Detection in Online Handwritten Documents using BLSTM Neural Networks |
Type |
Conference Article |
|
Year |
2012 |
Publication  |
13th International Conference on Frontiers in Handwriting Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
302-307 |
|
|
Keywords |
|
|
|
Abstract |
Mode detection in online handwritten documents refers to the process of distinguishing different types of contents, such as text, formulas, diagrams, or tables, one from another. In this paper a new approach to mode detection is proposed that uses bidirectional long-short term memory (BLSTM) neural networks. The BLSTM neural network is a novel type of recursive neural network that has been successfully applied in speech and handwriting recognition. In this paper we show that it has the potential to significantly outperform traditional methods for mode detection, which are usually based on stroke classification. As a further advantage over previous approaches, the proposed system is trainable and does not rely on user-defined heuristics. Moreover, it can be easily adapted to new or additional types of modes by just providing the system with new training data. |
|
|
Address |
Bari, italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4673-2262-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICFHR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ IFB2012 |
Serial |
2056 |
|
Permanent link to this record |
|
|
|
|
Author |
David Fernandez; Josep Llados; Alicia Fornes; R.Manmatha |


|
|
Title |
On Influence of Line Segmentation in Efficient Word Segmentation in Old Manuscripts |
Type |
Conference Article |
|
Year |
2012 |
Publication  |
13th International Conference on Frontiers in Handwriting Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
763-768 |
|
|
Keywords |
document image processing;handwritten character recognition;history;image segmentation;Spanish document;historical document;line segmentation;old handwritten document;old manuscript;word segmentation;Bifurcation;Dynamic programming;Handwriting recognition;Image segmentation;Measurement;Noise;Skeleton;Segmentation;document analysis;document and text processing;handwriting analysis;heuristics;path-finding |
|
|
Abstract |
he objective of this work is to show the importance of a good line segmentation to obtain better results in the segmentation of words of historical documents. We have used the approach developed by Manmatha and Rothfeder [1] to segment words in old handwritten documents. In their work the lines of the documents are extracted using projections. In this work, we have developed an approach to segment lines more efficiently. The new line segmentation algorithm tackles with skewed, touching and noisy lines, so it is significantly improves word segmentation. Experiments using Spanish documents from the Marriages Database of the Barcelona Cathedral show that this approach reduces the error rate by more than 20% |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4673-2262-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICFHR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ FLF2012 |
Serial |
2200 |
|
Permanent link to this record |
|
|
|
|
Author |
Nuria Cirera; Alicia Fornes; Josep Llados |


|
|
Title |
Hidden Markov model topology optimization for handwriting recognition |
Type |
Conference Article |
|
Year |
2015 |
Publication  |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
626-630 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we present a method to optimize the topology of linear left-to-right hidden Markov models. These models are very popular for sequential signals modeling on tasks such as handwriting recognition. Many topology definition methods select the number of states for a character model based
on character length. This can be a drawback when characters are shorter than the minimum allowed by the model, since they can not be properly trained nor recognized. The proposed method optimizes the number of states per model by automatically including convenient skip-state transitions and therefore it avoids the aforementioned problem.We discuss and compare our method with other character length-based methods such the Fixed, Bakis and Quantile methods. Our proposal performs well on off-line handwriting recognition task. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CFL2015 |
Serial |
2639 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes |


|
|
Title |
Handwritten Word Spotting by Inexact Matching of Grapheme Graphs |
Type |
Conference Article |
|
Year |
2015 |
Publication  |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
781 - 785 |
|
|
Keywords |
|
|
|
Abstract |
This paper presents a graph-based word spotting for handwritten documents. Contrary to most word spotting techniques, which use statistical representations, we propose a structural representation suitable to be robust to the inherent deformations of handwriting. Attributed graphs are constructed using a part-based approach. Graphemes extracted from shape convexities are used as stable units of handwriting, and are associated to graph nodes. Then, spatial relations between them determine graph edges. Spotting is defined in terms of an error-tolerant graph matching using bipartite-graph matching algorithm. To make the method usable in large datasets, a graph indexing approach that makes use of binary embeddings is used as preprocessing. Historical documents are used as experimental framework. The approach is comparable to statistical ones in terms of time and memory requirements, especially when dealing with large document collections. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 600.061; 602.006 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLF2015b |
Serial |
2642 |
|
Permanent link to this record |
|
|
|
|
Author |
Jean-Christophe Burie; J. Chazalon; M. Coustaty; S. Eskenazi; Muhammad Muzzamil Luqman; M. Mehri; Nibal Nayef; Jean-Marc Ogier; S. Prum; Marçal Rusiñol |


|
|
Title |
ICDAR2015 Competition on Smartphone Document Capture and OCR (SmartDoc) |
Type |
Conference Article |
|
Year |
2015 |
Publication  |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
1161 - 1165 |
|
|
Keywords |
|
|
|
Abstract |
Smartphones are enabling new ways of capture,
hence arises the need for seamless and reliable acquisition and
digitization of documents, in order to convert them to editable,
searchable and a more human-readable format. Current stateof-the-art
works lack databases and baseline benchmarks for
digitizing mobile captured documents. We have organized a
competition for mobile document capture and OCR in order to
address this issue. The competition is structured into two independent
challenges: smartphone document capture, and smartphone
OCR. This report describes the datasets for both challenges
along with their ground truth, details the performance evaluation
protocols which we used, and presents the final results of the
participating methods. In total, we received 13 submissions: 8
for challenge-I, and 5 for challenge-2. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.077; 601.223; 600.084 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BCC2015 |
Serial |
2681 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados |


|
|
Title |
Towards Query-by-Speech Handwritten Keyword Spotting |
Type |
Conference Article |
|
Year |
2015 |
Publication  |
13th International Conference on Document Analysis and Recognition ICDAR2015 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
501-505 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we present a new querying paradigm for handwritten keyword spotting. We propose to represent handwritten word images both by visual and audio representations, enabling a query-by-speech keyword spotting system. The two representations are merged together and projected to a common sub-space in the training phase. This transform allows to, given a spoken query, retrieve word instances that were only represented by the visual modality. In addition, the same method can be used backwards at no additional cost to produce a handwritten text-tospeech system. We present our first results on this new querying mechanism using synthetic voices over the George Washington
dataset. |
|
|
Address |
Nancy; France; August 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.084; 600.061; 601.223; 600.077;ADAS |
Approved |
no |
|
|
Call Number |
Admin @ si @ RAT2015b |
Serial |
2682 |
|
Permanent link to this record |