toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Pau Riba; Josep Llados; Alicia Fornes; Anjan Dutta edit   pdf
url  doi
isbn  openurl
  Title Large-scale Graph Indexing using Binary Embeddings of Node Contexts Type Conference Article
  Year 2015 Publication 10th IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition Abbreviated Journal  
  Volume 9069 Issue Pages 208-217  
  Keywords Graph matching; Graph indexing; Application in document analysis; Word spotting; Binary embedding  
  Abstract Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations in terms of feature vectors. Retrieving a query graph from a large dataset of graphs has the drawback of the high computational complexity required to compare the query and the target graphs. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. In this paper we propose a fast indexation formalism for graph retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Hence, each attribute counts the length of a walk of order k originated in a vertex with label l. Each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in a handwritten word spotting scenario in images of historical documents.  
  Address Beijing; China; May 2015  
  Corporate Author Thesis  
  Publisher Springer International Publishing Place of Publication Editor C.-L.Liu; B.Luo; W.G.Kropatsch; J.Cheng  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-319-18223-0 Medium (down)  
  Area Expedition Conference GbRPR  
  Notes DAG; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ RLF2015a Serial 2618  
Permanent link to this record
 

 
Author Youssef El Rhabi; Simon Loic; Brun Luc edit   pdf
url  openurl
  Title Estimation de la pose d’une caméra à partir d’un flux vidéo en s’approchant du temps réel Type Conference Article
  Year 2015 Publication 15ème édition d'ORASIS, journées francophones des jeunes chercheurs en vision par ordinateur ORASIS2015 Abbreviated Journal  
  Volume Issue Pages  
  Keywords Augmented Reality; SFM; SLAM; real time pose computation; 2D/3D registration  
  Abstract Finding a way to estimate quickly and robustly the pose of an image is essential in augmented reality. Here we will discuss the approach we chose in order to get closer to real time by using SIFT points [4]. We propose a method based on filtering both SIFT points and images on which to focus on. Hence we will focus on relevant data.  
  Address Amiens; France; June 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (down)  
  Area Expedition Conference ORASIS  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ RLL2015 Serial 2626  
Permanent link to this record
 

 
Author Nuria Cirera; Alicia Fornes; Josep Llados edit   pdf
url  doi
openurl 
  Title Hidden Markov model topology optimization for handwriting recognition Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 626-630  
  Keywords  
  Abstract In this paper we present a method to optimize the topology of linear left-to-right hidden Markov models. These models are very popular for sequential signals modeling on tasks such as handwriting recognition. Many topology definition methods select the number of states for a character model based
on character length. This can be a drawback when characters are shorter than the minimum allowed by the model, since they can not be properly trained nor recognized. The proposed method optimizes the number of states per model by automatically including convenient skip-state transitions and therefore it avoids the aforementioned problem.We discuss and compare our method with other character length-based methods such the Fixed, Bakis and Quantile methods. Our proposal performs well on off-line handwriting recognition task.
 
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (down)  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ CFL2015 Serial 2639  
Permanent link to this record
 

 
Author Juan Ignacio Toledo; Jordi Cucurull; Jordi Puiggali; Alicia Fornes; Josep Llados edit  url
doi  openurl
  Title Document Analysis Techniques for Automatic Electoral Document Processing: A Survey Type Conference Article
  Year 2015 Publication E-Voting and Identity, Proceedings of 5th international conference, VoteID 2015 Abbreviated Journal  
  Volume Issue Pages 139-141  
  Keywords Document image analysis; Computer vision; Paper ballots; Paper based elections; Optical scan; Tally  
  Abstract In this paper, we will discuss the most common challenges in electoral document processing and study the different solutions from the document analysis community that can be applied in each case. We will cover Optical Mark Recognition techniques to detect voter selections in the Australian Ballot, handwritten number recognition for preferential elections and handwriting recognition for write-in areas. We will also propose some particular adjustments that can be made to those general techniques in the specific context of electoral documents.  
  Address Bern; Switzerland; September 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (down)  
  Area Expedition Conference VoteID  
  Notes DAG; 600.061; 602.006; 600.077 Approved no  
  Call Number Admin @ si @ TCP2015 Serial 2641  
Permanent link to this record
 

 
Author Pau Riba; Josep Llados; Alicia Fornes edit   pdf
url  doi
openurl 
  Title Handwritten Word Spotting by Inexact Matching of Grapheme Graphs Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 781 - 785  
  Keywords  
  Abstract This paper presents a graph-based word spotting for handwritten documents. Contrary to most word spotting techniques, which use statistical representations, we propose a structural representation suitable to be robust to the inherent deformations of handwriting. Attributed graphs are constructed using a part-based approach. Graphemes extracted from shape convexities are used as stable units of handwriting, and are associated to graph nodes. Then, spatial relations between them determine graph edges. Spotting is defined in terms of an error-tolerant graph matching using bipartite-graph matching algorithm. To make the method usable in large datasets, a graph indexing approach that makes use of binary embeddings is used as preprocessing. Historical documents are used as experimental framework. The approach is comparable to statistical ones in terms of time and memory requirements, especially when dealing with large document collections.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (down)  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 600.061; 602.006 Approved no  
  Call Number Admin @ si @ RLF2015b Serial 2642  
Permanent link to this record
 

 
Author David Aldavert; Marçal Rusiñol; Ricardo Toledo; Josep Llados edit  doi
openurl 
  Title A Study of Bag-of-Visual-Words Representations for Handwritten Keyword Spotting Type Journal Article
  Year 2015 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 18 Issue 3 Pages 223-234  
  Keywords Bag-of-Visual-Words; Keyword spotting; Handwritten documents; Performance evaluation  
  Abstract The Bag-of-Visual-Words (BoVW) framework has gained popularity among the document image analysis community, specifically as a representation of handwritten words for recognition or spotting purposes. Although in the computer vision field the BoVW method has been greatly improved, most of the approaches in the document image analysis domain still rely on the basic implementation of the BoVW method disregarding such latest refinements. In this paper, we present a review of those improvements and its application to the keyword spotting task. We thoroughly evaluate their impact against a baseline system in the well-known George Washington dataset and compare the obtained results against nine state-of-the-art keyword spotting methods. In addition, we also compare both the baseline and improved systems with the methods presented at the Handwritten Keyword Spotting Competition 2014.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium (down)  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.055; 600.061; 601.223; 600.077; 600.097 Approved no  
  Call Number Admin @ si @ ART2015 Serial 2679  
Permanent link to this record
 

 
Author J. Chazalon; Marçal Rusiñol; Jean-Marc Ogier edit  doi
openurl 
  Title Improving Document Matching Performance by Local Descriptor Filtering Type Conference Article
  Year 2015 Publication 6th IAPR International Workshop on Camera Based Document Analysis and Recognition CBDAR2015 Abbreviated Journal  
  Volume Issue Pages 1216 - 1220  
  Keywords  
  Abstract In this paper we propose an effective method aimed at reducing the amount of local descriptors to be indexed in a document matching framework. In an off-line training stage, the matching between the model document and incoming images is computed retaining the local descriptors from the model that steadily produce good matches. We have evaluated this approach by using the ICDAR2015 SmartDOC dataset containing near 25 000 images from documents to be captured by a mobile device. We have tested the performance of this filtering step by using
ORB and SIFT local detectors and descriptors. The results show an important gain both in quality of the final matching as well as in time and space requirements.
 
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (down)  
  Area Expedition Conference CBDAR  
  Notes DAG; 600.077; 601.223; 600.084 Approved no  
  Call Number Admin @ si @ CRO2015a Serial 2680  
Permanent link to this record
 

 
Author Jean-Christophe Burie; J. Chazalon; M. Coustaty; S. Eskenazi; Muhammad Muzzamil Luqman; M. Mehri; Nibal Nayef; Jean-Marc Ogier; S. Prum; Marçal Rusiñol edit  url
doi  openurl
  Title ICDAR2015 Competition on Smartphone Document Capture and OCR (SmartDoc) Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 1161 - 1165  
  Keywords  
  Abstract Smartphones are enabling new ways of capture,
hence arises the need for seamless and reliable acquisition and
digitization of documents, in order to convert them to editable,
searchable and a more human-readable format. Current stateof-the-art
works lack databases and baseline benchmarks for
digitizing mobile captured documents. We have organized a
competition for mobile document capture and OCR in order to
address this issue. The competition is structured into two independent
challenges: smartphone document capture, and smartphone
OCR. This report describes the datasets for both challenges
along with their ground truth, details the performance evaluation
protocols which we used, and presents the final results of the
participating methods. In total, we received 13 submissions: 8
for challenge-I, and 5 for challenge-2.
 
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (down)  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 601.223; 600.084 Approved no  
  Call Number Admin @ si @ BCC2015 Serial 2681  
Permanent link to this record
 

 
Author Marçal Rusiñol; David Aldavert; Ricardo Toledo; Josep Llados edit   pdf
doi  openurl
  Title Towards Query-by-Speech Handwritten Keyword Spotting Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 501-505  
  Keywords  
  Abstract In this paper, we present a new querying paradigm for handwritten keyword spotting. We propose to represent handwritten word images both by visual and audio representations, enabling a query-by-speech keyword spotting system. The two representations are merged together and projected to a common sub-space in the training phase. This transform allows to, given a spoken query, retrieve word instances that were only represented by the visual modality. In addition, the same method can be used backwards at no additional cost to produce a handwritten text-tospeech system. We present our first results on this new querying mechanism using synthetic voices over the George Washington
dataset.
 
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (down)  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.084; 600.061; 601.223; 600.077;ADAS Approved no  
  Call Number Admin @ si @ RAT2015b Serial 2682  
Permanent link to this record
 

 
Author Hongxing Gao; Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados; R.Jain; D.Doermann edit  url
doi  openurl
  Title Novel Line Verification for Multiple Instance Focused Retrieval in Document Collections Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 481-485  
  Keywords  
  Abstract  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium (down)  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 601.223; 600.084; 600.061 Approved no  
  Call Number Admin @ si @ GRK2015 Serial 2683  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: