toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Klaus Broelemann; Anjan Dutta; Xiaoyi Jiang; Josep Llados edit   pdf
doi  isbn
openurl 
  Title Hierarchical Plausibility-Graphs for Symbol Spotting in Graphical Documents Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 25-37  
  Keywords (up)  
  Abstract Graph representation of graphical documents often suffers from noise such as spurious nodes and edges, and their discontinuity. In general these errors occur during the low-level image processing viz. binarization, skeletonization, vectorization etc. Hierarchical graph representation is a nice and efficient way to solve this kind of problem by hierarchically merging node-node and node-edge depending on the distance. But the creation of hierarchical graph representing the graphical information often uses hard thresholds on the distance to create the hierarchical nodes (next state) of the lower nodes (or states) of a graph. As a result, the representation often loses useful information. This paper introduces plausibilities to the nodes of hierarchical graph as a function of distance and proposes a modified algorithm for matching subgraphs of the hierarchical graphs. The plausibility-annotated nodes help to improve the performance of the matching algorithm on two hierarchical structures. To show the potential of this approach, we conduct an experiment with the SESYD dataset.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Bart Lamiroy; Jean-Marc Ogier  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 600.056; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ BDJ2014 Serial 2699  
Permanent link to this record
 

 
Author Marçal Rusiñol; Dimosthenis Karatzas; Josep Llados edit  doi
isbn  openurl
  Title Spotting Graphical Symbols in Camera-Acquired Documents in Real Time Type Book Chapter
  Year 2014 Publication Graphics Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 8746 Issue Pages 3-10  
  Keywords (up)  
  Abstract In this paper we present a system devoted to spot graphical symbols in camera-acquired document images. The system is based on the extraction and further matching of ORB compact local features computed over interest key-points. Then, the FLANN indexing framework based on approximate nearest neighbor search allows to efficiently match local descriptors between the captured scene and the graphical models. Finally, the RANSAC algorithm is used in order to compute the homography between the spotted symbol and its appearance in the document image. The proposed approach is efficient and is able to work in real time.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor Bart Lamiroy; Jean-Marc Ogier  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-662-44853-3 Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 600.055; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ RKL2014 Serial 2700  
Permanent link to this record
 

 
Author Suman Ghosh; Ernest Valveny edit   pdf
url  doi
openurl 
  Title Query by String word spotting based on character bi-gram indexing Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 881-885  
  Keywords (up)  
  Abstract In this paper we propose a segmentation-free query by string word spotting method. Both the documents and query strings are encoded using a recently proposed word representa- tion that projects images and strings into a common atribute space based on a pyramidal histogram of characters(PHOC). These attribute models are learned using linear SVMs over the Fisher Vector representation of the images along with the PHOC labels of the corresponding strings. In order to search through the whole page, document regions are indexed per character bi- gram using a similar attribute representation. On top of that, we propose an integral image representation of the document using a simplified version of the attribute model for efficient computation. Finally we introduce a re-ranking step in order to boost retrieval performance. We show state-of-the-art results for segmentation-free query by string word spotting in single-writer and multi-writer standard datasets  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ GhV2015a Serial 2715  
Permanent link to this record
 

 
Author R. Bertrand; Oriol Ramos Terrades; P. Gomez-Kramer; P. Franco; Jean-Marc Ogier edit  doi
openurl 
  Title A Conditional Random Field model for font forgery detection Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 576 - 580  
  Keywords (up)  
  Abstract Nowadays, document forgery is becoming a real issue. A large amount of documents that contain critical information as payment slips, invoices or contracts, are constantly subject to fraudster manipulation because of the lack of security regarding this kind of document. Previously, a system to detect fraudulent documents based on its intrinsic features has been presented. It was especially designed to retrieve copy-move forgery and imperfection due to fraudster manipulation. However, when a set of characters is not present in the original document, copy-move forgery is not feasible. Hence, the fraudster will use a text toolbox to add or modify information in the document by imitating the font or he will cut and paste characters from another document where the font properties are similar. This often results in font type errors. Thus, a clue to detect document forgery consists of finding characters, words or sentences in a document with font properties different from their surroundings. To this end, we present in this paper an automatic forgery detection method based on document font features. Using the Conditional Random Field a measurement of probability that a character belongs to a specific font is made by comparing the character font features to a knowledge database. Then, the character is classified as a genuine or a fake one by comparing its probability to belong to a certain font type with those of the neighboring characters.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ BRG2015 Serial 2725  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados; David Fernandez; Cristina Cañero edit  doi
openurl 
  Title Use case visual Bag-of-Words techniques for camera based identity document classification Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 721 - 725  
  Keywords (up)  
  Abstract Nowadays, automatic identity document recognition, including passport and driving license recognition, is at the core of many applications within the administrative and service sectors, such as police, hospitality, car renting, etc. In former years, the document information was manually extracted whereas today this data is recognized automatically from images obtained by flat-bed scanners. Yet, since these scanners tend to be expensive and voluminous, companies in the sector have recently turned their attention to cheaper, small and yet computationally powerful scanners: the mobile devices. The document identity recognition from mobile images enclose several new difficulties w.r.t traditional scanned images, such as the loss of a controlled background, perspective, blurring, etc. In this paper we present a real application for identity document classification of images taken from mobile devices. This classification process is of extreme importance since a prior knowledge of the document type and origin strongly facilitates the subsequent information extraction. The proposed method is based on a traditional Bagof-Words in which we have taken into consideration several key aspects to enhance recognition rate. The method performance has been studied on three datasets containing more than 2000 images from 129 different document classes.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 600.061; Approved no  
  Call Number Admin @ si @ HRL2015a Serial 2726  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados edit  url
doi  openurl
  Title Attributed Graph Grammar for floor plan analysis Type Conference Article
  Year 2015 Publication 13th International Conference on Document Analysis and Recognition ICDAR2015 Abbreviated Journal  
  Volume Issue Pages 726 - 730  
  Keywords (up)  
  Abstract In this paper, we propose the use of an Attributed Graph Grammar as unique framework to model and recognize the structure of floor plans. This grammar represents a building as a hierarchical composition of structurally and semantically related elements, where common representations are learned stochastically from annotated data. Given an input image, the parsing consists on constructing that graph representation that better agrees with the probabilistic model defined by the grammar. The proposed method provides several advantages with respect to the traditional floor plan analysis techniques. It uses an unsupervised statistical approach for detecting walls that adapts to different graphical notations and relaxes strong structural assumptions such are straightness and orthogonality. Moreover, the independence between the knowledge model and the parsing implementation allows the method to learn automatically different building configurations and thus, to cope the existing variability. These advantages are clearly demonstrated by comparing it with the most recent floor plan interpretation techniques on 4 datasets of real floor plans with different notations.  
  Address Nancy; France; August 2015  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.077; 600.061 Approved no  
  Call Number Admin @ si @ HRL2015b Serial 2727  
Permanent link to this record
 

 
Author Carlos David Martinez Hinarejos; Josep Llados; Alicia Fornes; Francisco Casacuberta; Lluis de Las Heras; Joan Mas; Moises Pastor; Oriol Ramos Terrades; Joan Andreu Sanchez; Enrique Vidal; Fernando Vilariño edit   pdf
openurl 
  Title Context, multimodality, and user collaboration in handwritten text processing: the CoMUN-HaT project Type Conference Article
  Year 2016 Publication 3rd IberSPEECH Abbreviated Journal  
  Volume Issue Pages  
  Keywords (up)  
  Abstract Processing of handwritten documents is a task that is of wide interest for many
purposes, such as those related to preserve cultural heritage. Handwritten text recognition techniques have been successfully applied during the last decade to obtain transcriptions of handwritten documents, and keyword spotting techniques have been applied for searching specific terms in image collections of handwritten documents. However, results on transcription and indexing are far from perfect. In this framework, the use of new data sources arises as a new paradigm that will allow for a better transcription and indexing of handwritten documents. Three main different data sources could be considered: context of the document (style, writer, historical time, topics,. . . ), multimodal data (representations of the document in a different modality, such as the speech signal of the dictation of the text), and user feedback (corrections, amendments,. . . ). The CoMUN-HaT project aims at the integration of these different data sources into the transcription and indexing task for handwritten documents: the use of context derived from the analysis of the documents, how multimodality can aid the recognition process to obtain more accurate transcriptions (including transcription in a modern version of the language), and integration into a userin-the-loop assisted text transcription framework. This will be reflected in the construction of a transcription and indexing platform that can be used by both professional and nonprofessional users, contributing to crowd-sourcing activities to preserve cultural heritage and to obtain an accessible version of the involved corpus.
 
  Address Lisboa; Portugal; November 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference IberSPEECH  
  Notes DAG; MV; 600.097;SIAI Approved no  
  Call Number Admin @ si @MLF2016 Serial 2813  
Permanent link to this record
 

 
Author Joan Mas; Alicia Fornes; Josep Llados edit   pdf
doi  openurl
  Title An Interactive Transcription System of Census Records using Word-Spotting based Information Transfer Type Conference Article
  Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 54-59  
  Keywords (up)  
  Abstract This paper presents a system to assist in the transcription of historical handwritten census records in a crowdsourcing platform. Census records have a tabular structured layout. They consist in a sequence of rows with information of homes ordered by street address. For each household snippet in the page, the list of family members is reported. The censuses are recorded in intervals of a few years and the information of individuals in each household is quite stable from a point in time to the next one. This redundancy is used to assist the transcriber, so the redundant information is transferred from the census already transcribed to the next one. Household records are aligned from one year to the next one using the knowledge of the ordering by street address. Given an already transcribed census, a query by string word spotting is applied. Thus, names from the census in time t are used as queries in the corresponding home record in time t+1. Since the search is constrained, the obtained precision-recall values are very high, with an important reduction in the transcription time. The proposed system has been tested in a real citizen-science experience where non expert users transcribe the census data of their home town.  
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 603.053; 602.006; 600.061; 600.077; 600.097 Approved no  
  Call Number Admin @ si @ MFL2016 Serial 2751  
Permanent link to this record
 

 
Author Juan Ignacio Toledo; Alicia Fornes; Jordi Cucurull; Josep Llados edit   pdf
doi  openurl
  Title Election Tally Sheets Processing System Type Conference Article
  Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 364-368  
  Keywords (up)  
  Abstract In paper based elections, manual tallies at polling station level produce myriads of documents. These documents share a common form-like structure and a reduced vocabulary worldwide. On the other hand, each tally sheet is filled by a different writer and on different countries, different scripts are used. We present a complete document analysis system for electoral tally sheet processing combining state of the art techniques with a new handwriting recognition subprocess based on unsupervised feature discovery with Variational Autoencoders and sequence classification with BLSTM neural networks. The whole system is designed to be script independent and allows a fast and reliable results consolidation process with reduced operational cost.  
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 602.006; 600.061; 601.225; 600.077; 600.097 Approved no  
  Call Number TFC2016 Serial 2752  
Permanent link to this record
 

 
Author Anders Hast; Alicia Fornes edit   pdf
doi  openurl
  Title A Segmentation-free Handwritten Word Spotting Approach by Relaxed Feature Matching Type Conference Article
  Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 150-155  
  Keywords (up)  
  Abstract The automatic recognition of historical handwritten documents is still considered challenging task. For this reason, word spotting emerges as a good alternative for making the information contained in these documents available to the user. Word spotting is defined as the task of retrieving all instances of the query word in a document collection, becoming a useful tool for information retrieval. In this paper we propose a segmentation-free word spotting approach able to deal with large document collections. Our method is inspired on feature matching algorithms that have been applied to image matching and retrieval. Since handwritten words have different shape, there is no exact transformation to be obtained. However, the sufficient degree of relaxation is achieved by using a Fourier based descriptor and an alternative approach to RANSAC called PUMA. The proposed approach is evaluated on historical marriage records, achieving promising results.  
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 602.006; 600.061; 600.077; 600.097 Approved no  
  Call Number HaF2016 Serial 2753  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: