toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Suman Ghosh; Ernest Valveny edit   pdf
doi  openurl
  Title Visual attention models for scene text recognition Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract arXiv:1706.01487
In this paper we propose an approach to lexicon-free recognition of text in scene images. Our approach relies on a LSTM-based soft visual attention model learned from convolutional features. A set of feature vectors are derived from an intermediate convolutional layer corresponding to different areas of the image. This permits encoding of spatial information into the image representation. In this way, the framework is able to learn how to selectively focus on different parts of the image. At every time step the recognizer emits one character using a weighted combination of the convolutional feature vectors according to the learned attention model. Training can be done end-to-end using only word level annotations. In addition, we show that modifying the beam search algorithm by integrating an explicit language model leads to significantly better recognition results. We validate the performance of our approach on standard SVT and ICDAR'03 scene text datasets, showing state-of-the-art performance in unconstrained text recognition.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ GhV2017b Serial 3080  
Permanent link to this record
 

 
Author Sounak Dey; Anjan Dutta; Juan Ignacio Toledo; Suman Ghosh; Josep Llados; Umapada Pal edit   pdf
url  openurl
  Title SigNet: Convolutional Siamese Network for Writer Independent Offline Signature Verification Type Miscellaneous
  Year 2018 Publication Arxiv Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract Offline signature verification is one of the most challenging tasks in biometrics and document forensics. Unlike other verification problems, it needs to model minute but critical details between genuine and forged signatures, because a skilled falsification might often resembles the real signature with small deformation. This verification task is even harder in writer independent scenarios which is undeniably fiscal for realistic cases. In this paper, we model an offline writer independent signature verification task with a convolutional Siamese network. Siamese networks are twin networks with shared weights, which can be trained to learn a feature space where similar observations are placed in proximity. This is achieved by exposing the network to a pair of similar and dissimilar observations and minimizing the Euclidean distance between similar pairs while simultaneously maximizing it between dissimilar pairs. Experiments conducted on cross-domain datasets emphasize the capability of our network to model forgery in different languages (scripts) and handwriting styles. Moreover, our designed Siamese network, named SigNet, exceeds the state-of-the-art results on most of the benchmark signature datasets, which paves the way for further research in this direction.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ DDT2018 Serial 3085  
Permanent link to this record
 

 
Author Lluis Pere de las Heras; Oriol Ramos Terrades; Josep Llados edit  url
openurl 
  Title Ontology-Based Understanding of Architectural Drawings Type Book Chapter
  Year 2017 Publication International Workshop on Graphics Recognition. GREC 2015.Graphic Recognition. Current Trends and Challenges Abbreviated Journal  
  Volume 9657 Issue (up) Pages 75-85  
  Keywords Graphics recognition; Floor plan analysi; Domain ontology  
  Abstract In this paper we present a knowledge base of architectural documents aiming at improving existing methods of floor plan classification and understanding. It consists of an ontological definition of the domain and the inclusion of real instances coming from both, automatically interpreted and manually labeled documents. The knowledge base has proven to be an effective tool to structure our knowledge and to easily maintain and upgrade it. Moreover, it is an appropriate means to automatically check the consistency of relational data and a convenient complement of hard-coded knowledge interpretation systems.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ HRL2017 Serial 3086  
Permanent link to this record
 

 
Author Dena Bazazian; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
openurl 
  Title Soft-PHOC Descriptor for End-to-End Word Spotting in Egocentric Scene Images Type Conference Article
  Year 2018 Publication International Workshop on Egocentric Perception, Interaction and Computing at ECCV Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract Word spotting in natural scene images has many applications in scene understanding and visual assistance. We propose Soft-PHOC, an intermediate representation of images based on character probability maps. Our representation extends the concept of the Pyramidal Histogram Of Characters (PHOC) by exploiting Fully Convolutional Networks to derive a pixel-wise mapping of the character distribution within candidate word regions. We show how to use our descriptors for word spotting tasks in egocentric camera streams through an efficient text line proposal algorithm. This is based on the Hough Transform over character attribute maps followed by scoring using Dynamic Time Warping (DTW). We evaluate our results on ICDAR 2015 Challenge 4 dataset of incidental scene text captured by an egocentric camera.  
  Address Munich; Alemanya; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes DAG; 600.129; 600.121; Approved no  
  Call Number Admin @ si @ BKB2018b Serial 3174  
Permanent link to this record
 

 
Author Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero edit  doi
openurl 
  Title Evaluation of Texture Descriptors for Validation of Counterfeit Documents Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue (up) Pages 1237-1242  
  Keywords  
  Abstract This paper describes an exhaustive comparative analysis and evaluation of different existing texture descriptor algorithms to differentiate between genuine and counterfeit documents. We include in our experiments different categories of algorithms and compare them in different scenarios with several counterfeit datasets, comprising banknotes and identity documents. Computational time in the extraction of each descriptor is important because the final objective is to use it in a real industrial scenario. HoG and CNN based descriptors stands out statistically over the rest in terms of the F1-score/time ratio performance.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 2379-2140 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.061; 601.269; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ BRL2017 Serial 3092  
Permanent link to this record
 

 
Author Sangheeta Roy; Palaiahnakote Shivakumara; Namita Jain; Vijeta Khare; Anjan Dutta; Umapada Pal; Tong Lu edit  doi
openurl 
  Title Rough-Fuzzy based Scene Categorization for Text Detection and Recognition in Video Type Journal Article
  Year 2018 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 80 Issue (up) Pages 64-82  
  Keywords Rough set; Fuzzy set; Video categorization; Scene image classification; Video text detection; Video text recognition  
  Abstract Scene image or video understanding is a challenging task especially when number of video types increases drastically with high variations in background and foreground. This paper proposes a new method for categorizing scene videos into different classes, namely, Animation, Outlet, Sports, e-Learning, Medical, Weather, Defense, Economics, Animal Planet and Technology, for the performance improvement of text detection and recognition, which is an effective approach for scene image or video understanding. For this purpose, at first, we present a new combination of rough and fuzzy concept to study irregular shapes of edge components in input scene videos, which helps to classify edge components into several groups. Next, the proposed method explores gradient direction information of each pixel in each edge component group to extract stroke based features by dividing each group into several intra and inter planes. We further extract correlation and covariance features to encode semantic features located inside planes or between planes. Features of intra and inter planes of groups are then concatenated to get a feature matrix. Finally, the feature matrix is verified with temporal frames and fed to a neural network for categorization. Experimental results show that the proposed method outperforms the existing state-of-the-art methods, at the same time, the performances of text detection and recognition methods are also improved significantly due to categorization.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ RSJ2018 Serial 3096  
Permanent link to this record
 

 
Author ChunYang; Xu Cheng Yin; Hong Yu; Dimosthenis Karatzas; Yu Cao edit  doi
isbn  openurl
  Title ICDAR2017 Robust Reading Challenge on Text Extraction from Biomedical Literature Figures (DeTEXT) Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue (up) Pages 1444-1447  
  Keywords  
  Abstract Hundreds of millions of figures are available in the biomedical literature, representing important biomedical experimental evidence. Since text is a rich source of information in figures, automatically extracting such text may assist in the task of mining figure information and understanding biomedical documents. Unlike images in the open domain, biomedical figures present a variety of unique challenges. For example, biomedical figures typically have complex layouts, small font sizes, short text, specific text, complex symbols and irregular text arrangements. This paper presents the final results of the ICDAR 2017 Competition on Text Extraction from Biomedical Literature Figures (ICDAR2017 DeTEXT Competition), which aims at extracting (detecting and recognizing) text from biomedical literature figures. Similar to text extraction from scene images and web pictures, ICDAR2017 DeTEXT Competition includes three major tasks, i.e., text detection, cropped word recognition and end-to-end text recognition. Here, we describe in detail the data set, tasks, evaluation protocols and participants of this competition, and report the performance of the participating methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-5386-3586-5 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ YCY2017 Serial 3098  
Permanent link to this record
 

 
Author Lluis Gomez; Marçal Rusiñol; Ali Furkan Biten; Dimosthenis Karatzas edit   pdf
openurl 
  Title Subtitulació automàtica d'imatges. Estat de l'art i limitacions en el context arxivístic Type Conference Article
  Year 2018 Publication Jornades Imatge i Recerca Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference JIR  
  Notes DAG; 600.084; 600.135; 601.338; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ GRB2018 Serial 3173  
Permanent link to this record
 

 
Author Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Cutting Sayre's Knot: Reading Scene Text without Segmentation. Application to Utility Meters Type Conference Article
  Year 2018 Publication 13th IAPR International Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue (up) Pages 97-102  
  Keywords Robust Reading; End-to-end Systems; CNN; Utility Meters  
  Abstract In this paper we present a segmentation-free system for reading text in natural scenes. A CNN architecture is trained in an end-to-end manner, and is able to directly output readings without any explicit text localization step. In order to validate our proposal, we focus on the specific case of reading utility meters. We present our results in a large dataset of images acquired by different users and devices, so text appears in any location, with different sizes, fonts and lengths, and the images present several distortions such as
dirt, illumination highlights or blur.
 
  Address Viena; Austria; April 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.084; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ GRK2018 Serial 3102  
Permanent link to this record
 

 
Author Dimosthenis Karatzas; Lluis Gomez; Marçal Rusiñol; Anguelos Nicolaou edit   pdf
url  openurl
  Title The Robust Reading Competition Annotation and Evaluation Platform Type Conference Article
  Year 2018 Publication 13th IAPR International Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue (up) Pages 61-66  
  Keywords  
  Abstract The ICDAR Robust Reading Competition (RRC), initiated in 2003 and reestablished in 2011, has become the defacto evaluation standard for the international community. Concurrent with its second incarnation in 2011, a continuous
effort started to develop an online framework to facilitate the hosting and management of competitions. This short paper briefly outlines the Robust Reading Competition Annotation and Evaluation Platform, the backbone of the
Robust Reading Competition, comprising a collection of tools and processes that aim to simplify the management and annotation of data, and to provide online and offline performance evaluation and analysis services.
 
  Address Viena; Austria; April 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.084; 600.121 Approved no  
  Call Number KGR2018 Serial 3103  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: