toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Arka Ujjal Dey; Suman Ghosh; Ernest Valveny edit   pdf
openurl 
  Title Don't only Feel Read: Using Scene text to understand advertisements Type Conference Article
  Year 2018 Publication IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract We propose a framework for automated classification of Advertisement Images, using not just Visual features but also Textual cues extracted from embedded text. Our approach takes inspiration from the assumption that Ad images contain meaningful textual content, that can provide discriminative semantic interpretetion, and can thus aid in classifcation tasks. To this end, we develop a framework using off-the-shelf components, and demonstrate the effectiveness of Textual cues in semantic Classfication tasks.  
  Address Salt Lake City; Utah; USA; June 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPRW  
  Notes DAG; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ DGV2018 Serial 3551  
Permanent link to this record
 

 
Author Leonardo Galteri; Dena Bazazian; Lorenzo Seidenari; Marco Bertini; Andrew Bagdanov; Anguelos Nicolaou; Dimosthenis Karatzas; Alberto del Bimbo edit   pdf
doi  openurl
  Title Reading Text in the Wild from Compressed Images Type Conference Article
  Year 2017 Publication 1st International workshop on Egocentric Perception, Interaction and Computing Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract Reading text in the wild is gaining attention in the computer vision community. Images captured in the wild are almost always compressed to varying degrees, depending on application context, and this compression introduces artifacts
that distort image content into the captured images. In this paper we investigate the impact these compression artifacts have on text localization and recognition in the wild. We also propose a deep Convolutional Neural Network (CNN) that can eliminate text-specific compression artifacts and which leads to an improvement in text recognition. Experimental results on the ICDAR-Challenge4 dataset demonstrate that compression artifacts have a significant
impact on text localization and recognition and that our approach yields an improvement in both – especially at high compression rates.
 
  Address Venice; Italy; October 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICCV - EPIC  
  Notes DAG; 600.084; 600.121 Approved no  
  Call Number Admin @ si @ GBS2017 Serial 3006  
Permanent link to this record
 

 
Author N. Nayef; F. Yin; I. Bizid; H .Choi; Y. Feng; Dimosthenis Karatzas; Z. Luo; Umapada Pal; Christophe Rigaud; J. Chazalon; W. Khlif; Muhammad Muzzamil Luqman; Jean-Christophe Burie; C.L. Liu; Jean-Marc Ogier edit  doi
isbn  openurl
  Title ICDAR2017 Robust Reading Challenge on Multi-Lingual Scene Text Detection and Script Identification – RRC-MLT Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue (up) Pages 1454-1459  
  Keywords  
  Abstract Text detection and recognition in a natural environment are key components of many applications, ranging from business card digitization to shop indexation in a street. This competition aims at assessing the ability of state-of-the-art methods to detect Multi-Lingual Text (MLT) in scene images, such as in contents gathered from the Internet media and in modern cities where multiple cultures live and communicate together. This competition is an extension of the Robust Reading Competition (RRC) which has been held since 2003 both in ICDAR and in an online context. The proposed competition is presented as a new challenge of the RRC. The dataset built for this challenge largely extends the previous RRC editions in many aspects: the multi-lingual text, the size of the dataset, the multi-oriented text, the wide variety of scenes. The dataset is comprised of 18,000 images which contain text belonging to 9 languages. The challenge is comprised of three tasks related to text detection and script classification. We have received a total of 16 participations from the research and industrial communities. This paper presents the dataset, the tasks and the findings of this RRC-MLT challenge.  
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-5386-3586-5 Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ NYB2017 Serial 3097  
Permanent link to this record
 

 
Author Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero edit   pdf
doi  openurl
  Title e-Counterfeit: a mobile-server platform for document counterfeit detection Type Conference Article
  Year 2017 Publication 14th IAPR International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract This paper presents a novel application to detect counterfeit identity documents forged by a scan-printing operation. Texture analysis approaches are proposed to extract validation features from security background that is usually printed in documents as IDs or banknotes. The main contribution of this work is the end-to-end mobile-server architecture, which provides a service for non-expert users and therefore can be used in several scenarios. The system also provides a crowdsourcing mode so labeled images can be gathered, generating databases for incremental training of the algorithms.  
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.061; 600.097; 600.121 Approved no  
  Call Number Admin @ si @ BRL2018 Serial 3084  
Permanent link to this record
 

 
Author Antonio Lopez; Atsushi Imiya; Tomas Pajdla; Jose Manuel Alvarez edit  isbn
openurl 
  Title Computer Vision in Vehicle Technology: Land, Sea & Air Type Book Whole
  Year Publication Computer Vision in Vehicle Technology: Land, Sea & Air Abbreviated Journal  
  Volume Issue (up) Pages  
  Keywords  
  Abstract A unified view of the use of computer vision technology for different types of vehicles

Computer Vision in Vehicle Technology focuses on computer vision as on-board technology, bringing together fields of research where computer vision is progressively penetrating: the automotive sector, unmanned aerial and underwater vehicles. It also serves as a reference for researchers of current developments and challenges in areas of the application of computer vision, involving vehicles such as advanced driver assistance (pedestrian detection, lane departure warning, traffic sign recognition), autonomous driving and robot navigation (with visual simultaneous localization and mapping) or unmanned aerial vehicles (obstacle avoidance, landscape classification and mapping, fire risk assessment).

The overall role of computer vision for the navigation of different vehicles, as well as technology to address on-board applications, is analysed.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-118-86807-2 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ LIP2017b Serial 3049  
Permanent link to this record
 

 
Author Alicia Fornes; Veronica Romero; Arnau Baro; Juan Ignacio Toledo; Joan Andreu Sanchez; Enrique Vidal; Josep Llados edit   pdf
doi  openurl
  Title ICDAR2017 Competition on Information Extraction in Historical Handwritten Records Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue (up) Pages 1389-1394  
  Keywords  
  Abstract The extraction of relevant information from historical handwritten document collections is one of the key steps in order to make these manuscripts available for access and searches. In this competition, the goal is to detect the named entities and assign each of them a semantic category, and therefore, to simulate the filling in of a knowledge database. This paper describes the dataset, the tasks, the evaluation metrics, the participants methods and the results.  
  Address Kyoto; Japan; November 2017  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.225; 600.121 Approved no  
  Call Number Admin @ si @ FRB2017 Serial 3052  
Permanent link to this record
 

 
Author Pau Riba; Anjan Dutta; Josep Llados; Alicia Fornes; Sounak Dey edit   pdf
doi  openurl
  Title Improving Information Retrieval in Multiwriter Scenario by Exploiting the Similarity Graph of Document Terms Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue (up) Pages 475-480  
  Keywords document terms; information retrieval; affinity graph; graph of document terms; multiwriter; graph diffusion  
  Abstract Information Retrieval (IR) is the activity of obtaining information resources relevant to a questioned information. It usually retrieves a set of objects ranked according to the relevancy to the needed fact. In document analysis, information retrieval receives a lot of attention in terms of symbol and word spotting. However, through decades the community mostly focused either on printed or on single writer scenario, where the
state-of-the-art results have achieved reasonable performance on the available datasets. Nevertheless, the existing algorithms do not perform accordingly on multiwriter scenario. A graph representing relations between a set of objects is a structure where each node delineates an individual element and the similarity between them is represented as a weight on the connecting edge. In this paper, we explore different analytics of graphs constructed from words or graphical symbols, such as diffusion, shortest path, etc. to improve the performance of information retrieval methods in multiwriter scenario
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ RDL2017a Serial 3053  
Permanent link to this record
 

 
Author Anjan Dutta; Pau Riba; Josep Llados; Alicia Fornes edit   pdf
doi  openurl
  Title Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue (up) Pages 33-38  
  Keywords graph embedding; hierarchical graph representation; graph clustering; stochastic graphlet embedding; graph classification  
  Abstract Document pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE).
Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support
vector machine, our proposed PSGE has outperformed the state-of-the-art results in recognition of handwritten words as well as graphical symbols
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ DRL2017 Serial 3054  
Permanent link to this record
 

 
Author Juan Ignacio Toledo; Sounak Dey; Alicia Fornes; Josep Llados edit   pdf
doi  openurl
  Title Handwriting Recognition by Attribute embedding and Recurrent Neural Networks Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue (up) Pages 1038-1043  
  Keywords  
  Abstract Handwriting recognition consists in obtaining the transcription of a text image. Recent word spotting methods based on attribute embedding have shown good performance when recognizing words. However, they are holistic methods in the sense that they recognize the word as a whole (i.e. they find the closest word in the lexicon to the word image). Consequently,
these kinds of approaches are not able to deal with out of vocabulary words, which are common in historical manuscripts. Also, they cannot be extended to recognize text lines. In order to address these issues, in this paper we propose a handwriting recognition method that adapts the attribute embedding to sequence learning. Concretely, the method learns the attribute embedding of patches of word images with a convolutional neural network. Then, these embeddings are presented as a sequence to a recurrent neural network that produces the transcription. We obtain promising results even without the use of any kind of dictionary or language model
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.225; 600.121 Approved no  
  Call Number Admin @ si @ TDF2017 Serial 3055  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit   pdf
doi  openurl
  Title Optical Music Recognition by Recurrent Neural Networks Type Conference Article
  Year 2017 Publication 14th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue (up) Pages 25-26  
  Keywords Optical Music Recognition; Recurrent Neural Network; Long Short-Term Memory  
  Abstract Optical Music Recognition is the task of transcribing a music score into a machine readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number Admin @ si @ BRC2017 Serial 3056  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: