toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Mohamed Ali Souibgui; Alicia Fornes; Yousri Kessentini; Beata Megyesi edit  doi
openurl 
  Title Few shots are all you need: A progressive learning approach for low resource handwritten text recognition Type Journal Article
  Year 2022 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 160 Issue Pages (down) 43-49  
  Keywords  
  Abstract Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. In this paper, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human annotation process, by requiring only a few images of each alphabet symbols. The method consists of detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from an alphabet, which could differ from the alphabet of the target domain. A second training step is then applied to reduce the gap between the source and the target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the unlabeled data. The evaluation on different datasets shows that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in the following repository: https://github.com/dali92002/HTRbyMatching  
  Address  
  Corporate Author Thesis  
  Publisher Elsevier Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121; 600.162; 602.230 Approved no  
  Call Number Admin @ si @ SFK2022 Serial 3736  
Permanent link to this record
 

 
Author Pau Torras; Arnau Baro; Alicia Fornes; Lei Kang edit   pdf
openurl 
  Title Improving Handwritten Music Recognition through Language Model Integration Type Conference Article
  Year 2022 Publication 4th International Workshop on Reading Music Systems (WoRMS2022) Abbreviated Journal  
  Volume Issue Pages (down) 42-46  
  Keywords optical music recognition; historical sources; diversity; music theory; digital humanities  
  Abstract Handwritten Music Recognition, especially in the historical domain, is an inherently challenging endeavour; paper degradation artefacts and the ambiguous nature of handwriting make recognising such scores an error-prone process, even for the current state-of-the-art Sequence to Sequence models. In this work we propose a way of reducing the production of statistically implausible output sequences by fusing a Language Model into a recognition Sequence to Sequence model. The idea is leveraging visually-conditioned and context-conditioned output distributions in order to automatically find and correct any mistakes that would otherwise break context significantly. We have found this approach to improve recognition results to 25.15 SER (%) from a previous best of 31.79 SER (%) in the literature.  
  Address November 18, 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WoRMS  
  Notes DAG; 600.121; 600.162; 602.230 Approved no  
  Call Number Admin @ si @ TBF2022 Serial 3735  
Permanent link to this record
 

 
Author Marçal Rusiñol; Josep Llados edit  openurl
  Title A Region-Based Hashing Approach for Symbol Spotting in Thechnical Documents Type Conference Article
  Year 2007 Publication Seventh IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages (down) 41–42  
  Keywords  
  Abstract  
  Address Curitiba (Brazil)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor J. Llados, W. Liu, J.M. Ogier  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number DAG @ dag @ RuL2007a Serial 846  
Permanent link to this record
 

 
Author Salim Jouili; Salvatore Tabbone; Ernest Valveny edit   pdf
doi  isbn
openurl 
  Title Comparing Graph Similarity Measures for Graphical Recognition Type Book Chapter
  Year 2010 Publication Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers Abbreviated Journal  
  Volume 6020 Issue Pages (down) 37-48  
  Keywords  
  Abstract In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used including line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each graph distance measure depends on the kind of data and the graph representation technique.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number Admin @ si @ JTV2010 Serial 2404  
Permanent link to this record
 

 
Author Jaume Gibert; Ernest Valveny; Oriol Ramos Terrades; Horst Bunke edit  doi
isbn  openurl
  Title Multiple Classifiers for Graph of Words Embedding Type Conference Article
  Year 2011 Publication 10th International Conference on Multiple Classifier Systems Abbreviated Journal  
  Volume 6713 Issue Pages (down) 36-45  
  Keywords  
  Abstract During the last years, there has been an increasing interest in applying the multiple classifier framework to the domain of structural pattern recognition. Constructing base classifiers when the input patterns are graph based representations is not an easy problem. In this work, we make use of the graph embedding methodology in order to construct different feature vector representations for graphs. The graph of words embedding assigns a feature vector to every graph by counting unary and binary relations between node representatives and combining these pieces of information into a single vector. Selecting different node representatives leads to different vectorial representations and therefore to different base classifiers that can be combined. We experimentally show how this methodology significantly improves the classification of graphs with respect to single base classifiers.  
  Address Napoles, Italy  
  Corporate Author Thesis  
  Publisher Place of Publication Editor Carlo Sansone; Josef Kittler; Fabio Roli  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-642-21556-8 Medium  
  Area Expedition Conference MCS  
  Notes DAG Approved no  
  Call Number Admin @ si @GVR2011 Serial 1745  
Permanent link to this record
 

 
Author David Fernandez; Simone Marinai; Josep Llados; Alicia Fornes edit   pdf
doi  isbn
openurl 
  Title Contextual Word Spotting in Historical Manuscripts using Markov Logic Networks Type Conference Article
  Year 2013 Publication 2nd International Workshop on Historical Document Imaging and Processing Abbreviated Journal  
  Volume Issue Pages (down) 36-43  
  Keywords  
  Abstract Natural languages can often be modelled by suitable grammars whose knowledge can improve the word spotting results. The implicit contextual information is even more useful when dealing with information that is intrinsically described as one collection of records. In this paper, we present one approach to word spotting which uses the contextual information of records to improve the results. The method relies on Markov Logic Networks to probabilistically model the relational organization of handwritten records. The performance has been evaluated on the Barcelona Marriages Dataset that contains structured handwritten records that summarize marriage information.  
  Address washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-1-4503-2115-0 Medium  
  Area Expedition Conference HIP  
  Notes DAG; 600.056; 600.045; 600.061; 602.006 Approved no  
  Call Number Admin @ si @ FML2013 Serial 2308  
Permanent link to this record
 

 
Author Thanh Ha Do; Salvatore Tabbone; Oriol Ramos Terrades edit   pdf
url  openurl
  Title Sparse representation over learned dictionary for symbol recognition Type Journal Article
  Year 2016 Publication Signal Processing Abbreviated Journal SP  
  Volume 125 Issue Pages (down) 36-47  
  Keywords Symbol Recognition; Sparse Representation; Learned Dictionary; Shape Context; Interest Points  
  Abstract In this paper we propose an original sparse vector model for symbol retrieval task. More speci cally, we apply the K-SVD algorithm for learning a visual dictionary based on symbol descriptors locally computed around interest points. Results on benchmark datasets show that the obtained sparse representation is competitive related to state-of-the-art methods. Moreover, our sparse representation is invariant to rotation and scale transforms and also robust to degraded images and distorted symbols. Thereby, the learned visual dictionary is able to represent instances of unseen classes of symbols.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.061; 600.077 Approved no  
  Call Number Admin @ si @ DTR2016 Serial 2946  
Permanent link to this record
 

 
Author Jialuo Chen; Mohamed Ali Souibgui; Alicia Fornes; Beata Megyesi edit   pdf
openurl 
  Title Unsupervised Alphabet Matching in Historical Encrypted Manuscript Images Type Conference Article
  Year 2021 Publication 4th International Conference on Historical Cryptology Abbreviated Journal  
  Volume Issue Pages (down) 34-37  
  Keywords  
  Abstract Historical ciphers contain a wide range ofsymbols from various symbol sets. Iden-tifying the cipher alphabet is a prerequi-site before decryption can take place andis a time-consuming process. In this workwe explore the use of image processing foridentifying the underlying alphabet in ci-pher images, and to compare alphabets be-tween ciphers. The experiments show thatciphers with similar alphabets can be suc-cessfully discovered through clustering.  
  Address Virtual; September 2021  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference HistoCrypt  
  Notes DAG; 602.230; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ CSF2021 Serial 3617  
Permanent link to this record
 

 
Author Albert Gordo; Florent Perronnin; Yunchao Gong; Svetlana Lazebnik edit   pdf
doi  openurl
  Title Asymmetric Distances for Binary Embeddings Type Journal Article
  Year 2014 Publication IEEE Transactions on Pattern Analysis and Machine Intelligence Abbreviated Journal TPAMI  
  Volume 36 Issue 1 Pages (down) 33-47  
  Keywords  
  Abstract In large-scale query-by-example retrieval, embedding image signatures in a binary space offers two benefits: data compression and search efficiency. While most embedding algorithms binarize both query and database signatures, it has been noted that this is not strictly a requirement. Indeed, asymmetric schemes which binarize the database signatures but not the query still enjoy the same two benefits but may provide superior accuracy. In this work, we propose two general asymmetric distances which are applicable to a wide variety of embedding techniques including Locality Sensitive Hashing (LSH), Locality Sensitive Binary Codes (LSBC), Spectral Hashing (SH), PCA Embedding (PCAE), PCA Embedding with random rotations (PCAE-RR), and PCA Embedding with iterative quantization (PCAE-ITQ). We experiment on four public benchmarks containing up to 1M images and show that the proposed asymmetric distances consistently lead to large improvements over the symmetric Hamming distance for all binary embedding techniques.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0162-8828 ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.045; 605.203; 600.077 Approved no  
  Call Number Admin @ si @ GPG2014 Serial 2272  
Permanent link to this record
 

 
Author Agnes Borras; Josep Llados edit   pdf
doi  isbn
openurl 
  Title Similarity-Based Object Retrieval Using Appearance and Geometric Feature Combination Type Book Chapter
  Year 2007 Publication 3rd Iberian Conference on Pattern Recognition and Image Analysis (IbPRIA 2007), J. Marti et al. (Eds.) LNCS 4477:113–120 Abbreviated Journal LNCS  
  Volume 4478 Issue Pages (down) 33–39  
  Keywords  
  Abstract This work presents a content-based image retrieval system of general purpose that deals with cluttered scenes containing a given query object. The system is flexible enough to handle with a single image of an object despite its rotation, translation and scale variations. The image content is divided in parts that are described with a combination of features based on geometrical and color properties. The idea behind the feature combination is to benefit from a fuzzy similarity computation that provides robustness and tolerance to the retrieval process. The features can be independently computed and the image parts can be easily indexed by using a table structure on every feature value. Finally a process inspired in the alignment strategies is used to check the coherence of the object parts found in a scene. Our work presents a system of easy implementation that uses an open set of features and can suit a wide variety of applications.  
  Address Girona (Spain)  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-540-72848-1 Medium  
  Area Expedition Conference  
  Notes DAG; Approved no  
  Call Number DAG @ dag @ BoL2007a; IAM @ iam @ BoL2007a Serial 776  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: