toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Cutting Sayre's Knot: Reading Scene Text without Segmentation. Application to Utility Meters Type Conference Article
  Year 2018 Publication 13th IAPR International Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages (down) 97-102  
  Keywords Robust Reading; End-to-end Systems; CNN; Utility Meters  
  Abstract In this paper we present a segmentation-free system for reading text in natural scenes. A CNN architecture is trained in an end-to-end manner, and is able to directly output readings without any explicit text localization step. In order to validate our proposal, we focus on the specific case of reading utility meters. We present our results in a large dataset of images acquired by different users and devices, so text appears in any location, with different sizes, fonts and lengths, and the images present several distortions such as
dirt, illumination highlights or blur.
 
  Address Viena; Austria; April 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.084; 600.121; 600.129 Approved no  
  Call Number Admin @ si @ GRK2018 Serial 3102  
Permanent link to this record
 

 
Author Sounak Dey; Palaiahnakote Shivakumara; K.S. Raghunanda; Umapada Pal; Tong Lu; G. Hemantha Kumar; Chee Seng Chan edit  url
openurl 
  Title Script independent approach for multi-oriented text detection in scene image Type Journal Article
  Year 2017 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 242 Issue Pages (down) 96-112  
  Keywords  
  Abstract Developing a text detection method which is invariant to scripts in natural scene images is a challeng- ing task due to different geometrical structures of various scripts. Besides, multi-oriented of text lines in natural scene images make the problem more challenging. This paper proposes to explore ring radius transform (RRT) for text detection in multi-oriented and multi-script environments. The method finds component regions based on convex hull to generate radius matrices using RRT. It is a fact that RRT pro- vides low radius values for the pixels that are near to edges, constant radius values for the pixels that represent stroke width, and high radius values that represent holes created in background and convex hull because of the regular structures of text components. We apply k -means clustering on the radius matrices to group such spatially coherent regions into individual clusters. Then the proposed method studies the radius values of such cluster components that are close to the centroid and far from the cen- troid to detect text components. Furthermore, we have developed a Bangla dataset (named as ISI-UM dataset) and propose a semi-automatic system for generating its ground truth for text detection of arbi- trary orientations, which can be used by the researchers for text detection and recognition in the future. The ground truth will be released to public. Experimental results on our ISI-UM data and other standard datasets, namely, ICDAR 2013 scene, SVT and MSRA data, show that the proposed method outperforms the existing methods in terms of multi-lingual and multi-oriented text detection ability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number Admin @ si @ DSR2017 Serial 3260  
Permanent link to this record
 

 
Author Lasse Martensson; Ekta Vats; Anders Hast; Alicia Fornes edit  url
openurl 
  Title In Search of the Scribe: Letter Spotting as a Tool for Identifying Scribes in Large Handwritten Text Corpora Type Journal
  Year 2019 Publication Journal for Information Technology Studies as a Human Science Abbreviated Journal HUMAN IT  
  Volume 14 Issue 2 Pages (down) 95-120  
  Keywords Scribal attribution/ writer identification; digital palaeography; word spotting; mediaeval charters; mediaeval manuscripts  
  Abstract In this article, a form of the so-called word spotting-method is used on a large set of handwritten documents in order to identify those that contain script of similar execution. The point of departure for the investigation is the mediaeval Swedish manuscript Cod. Holm. D 3. The main scribe of this manuscript has yet not been identified in other documents. The current attempt aims at localising other documents that display a large degree of similarity in the characteristics of the script, these being possible candidates for being executed by the same hand. For this purpose, the method of word spotting has been employed, focusing on individual letters, and therefore the process is referred to as letter spotting in the article. In this process, a set of ‘g’:s, ‘h’:s and ‘k’:s have been selected as templates, and then a search has been made for close matches among the mediaeval Swedish charters. The search resulted in a number of charters that displayed great similarities with the manuscript D 3. The used letter spotting method thus proofed to be a very efficient sorting tool localising similar script samples.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.140; 600.121 Approved no  
  Call Number Admin @ si @ MVH2019 Serial 3234  
Permanent link to this record
 

 
Author Muhammad Muzzamil Luqman; Josep Llados; Jean-Yves Ramel; Thierry Brouard edit  doi
isbn  openurl
  Title A Fuzzy-Interval Based Approach For Explicit Graph Embedding, Recognizing Patterns in Signals, Speech, Images and Video Type Conference Article
  Year 2010 Publication 20th International Conference on Pattern Recognition Abbreviated Journal  
  Volume 6388 Issue Pages (down) 93–98  
  Keywords  
  Abstract We present a new method for explicit graph embedding. Our algorithm extracts a feature vector for an undirected attributed graph. The proposed feature vector encodes details about the number of nodes, number of edges, node degrees, the attributes of nodes and the attributes of edges in the graph. The first two features are for the number of nodes and the number of edges. These are followed by w features for node degrees, m features for k node attributes and n features for l edge attributes — which represent the distribution of node degrees, node attribute values and edge attribute values, and are obtained by defining (in an unsupervised fashion), fuzzy-intervals over the list of node degrees, node attributes and edge attributes. Experimental results are provided for sample data of ICPR2010 contest GEPR.  
  Address  
  Corporate Author Thesis  
  Publisher Springer, Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-17710-1 Medium  
  Area Expedition Conference ICPR  
  Notes DAG Approved no  
  Call Number DAG @ dag @ LLR2010 Serial 1459  
Permanent link to this record
 

 
Author Josep Llados; Gemma Sanchez; Enric Marti edit  doi
openurl 
  Title A String-Based Method to Recognize Symbols and Structural Textures in Architectural Plans. Type Conference Article
  Year 1997 Publication Graphics Recognition Algorithms and Systems. GREC 1997. Abbreviated Journal  
  Volume 1389 Issue Pages (down) 91-103  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number DAG @ dag @ LSM1997 Serial 44  
Permanent link to this record
 

 
Author Gemma Sanchez; Josep Llados; Enric Marti edit   pdf
doi  openurl
  Title A string-based method to recognize symbols and structural textures in architectural plans Type Conference Article
  Year 1997 Publication 2nd IAPR Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages (down) 91-103  
  Keywords  
  Abstract This paper deals with the recognition of symbols and struc- tural textures in architectural plans using string matching techniques. A plan is represented by an attributed graph whose nodes represent characteristic points and whose edges represent segments. Symbols and textures can be seen as a set of regions, i.e. closed loops in the graph, with a particular arrangement. The search for a symbol involves a graph matching between the regions of a model graph and the regions of the graph representing the document. Discriminating a texture means a clus- tering of neighbouring regions of this graph. Both procedures involve a similarity measure between graph regions. A string codification is used to represent the sequence of outlining edges of a region. Thus, the simila- rity between two regions is defined in terms of the string edit distance between their boundary strings. The use of string matching allows the recognition method to work also under presence of distortion.  
  Address Nancy, France  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; IAM Approved no  
  Call Number IAM @ iam @ SLE1997 Serial 1498  
Permanent link to this record
 

 
Author Josep Llados; Gemma Sanchez; Enric Marti edit   pdf
doi  openurl
  Title A string based method to recognize symbols and structural textures in architectural plans Type Book Chapter
  Year 1998 Publication Graphics Recognition Algorithms and Systems Second International Workshop, GREC' 97 Nancy, France, August 22–23, 1997 Selected Papers Abbreviated Journal LNCS  
  Volume 1389 Issue 1998 Pages (down) 91-103  
  Keywords  
  Abstract This paper deals with the recognition of symbols and structural textures in architectural plans using string matching techniques. A plan is represented by an attributed graph whose nodes represent characteristic points and whose edges represent segments. Symbols and textures can be seen as a set of regions, i.e. closed loops in the graph, with a particular arrangement. The search for a symbol involves a graph matching between the regions of a model graph and the regions of the graph representing the document. Discriminating a texture means a clustering of neighbouring regions of this graph. Both procedures involve a similarity measure between graph regions. A string codification is used to represent the sequence of outlining edges of a region. Thus, the similarity between two regions is defined in terms of the string edit distance between their boundary strings. The use of string matching allows the recognition method to work also under presence of distortion.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Link Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title LNCS Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; IAM Approved no  
  Call Number IAM @ iam @ SLE1998 Serial 1573  
Permanent link to this record
 

 
Author Ernest Valveny; Enric Marti edit  openurl
  Title Dimensions analysis in hand-drawn architectural drawings Type Conference Article
  Year 1997 Publication (SNRFAI’97) 7th Spanish National Symposium on Pattern Recognition and Image Analysis Abbreviated Journal  
  Volume Issue Pages (down) 90-91  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication CVC-UAB Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG;IAM; Approved no  
  Call Number IAM @ iam @ VAM1997 Serial 1659  
Permanent link to this record
 

 
Author Debora Gil; Oriol Ramos Terrades; Raquel Perez edit  doi
openurl 
  Title Topological Radiomics (TOPiomics): Early Detection of Genetic Abnormalities in Cancer Treatment Evolution Type Book Chapter
  Year 2021 Publication Extended Abstracts GEOMVAP 2019, Trends in Mathematics 15 Abbreviated Journal  
  Volume 15 Issue Pages (down) 89–93  
  Keywords  
  Abstract Abnormalities in radiomic measures correlate to genomic alterations prone to alter the outcome of personalized anti-cancer treatments. TOPiomics is a new method for the early detection of variations in tumor imaging phenotype from a topological structure in multi-view radiomic spaces.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Nature Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes IAM; DAG; 600.120; 600.145; 600.139 Approved no  
  Call Number Admin @ si @ GRP2021 Serial 3594  
Permanent link to this record
 

 
Author M. Visani; Oriol Ramos Terrades; Salvatore Tabbone edit  doi
openurl 
  Title A Protocol to Characterize the Descriptive Power and the Complementarity of Shape Descriptors Type Journal Article
  Year 2011 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 14 Issue 1 Pages (down) 87-100  
  Keywords Document analysis; Shape descriptors; Symbol description; Performance characterization; Complementarity analysis  
  Abstract Most document analysis applications rely on the extraction of shape descriptors, which may be grouped into different categories, each category having its own advantages and drawbacks (O.R. Terrades et al. in Proceedings of ICDAR’07, pp. 227–231, 2007). In order to improve the richness of their description, many authors choose to combine multiple descriptors. Yet, most of the authors who propose a new descriptor content themselves with comparing its performance to the performance of a set of single state-of-the-art descriptors in a specific applicative context (e.g. symbol recognition, symbol spotting...). This results in a proliferation of the shape descriptors proposed in the literature. In this article, we propose an innovative protocol, the originality of which is to be as independent of the final application as possible and which relies on new quantitative and qualitative measures. We introduce two types of measures: while the measures of the first type are intended to characterize the descriptive power (in terms of uniqueness, distinctiveness and robustness towards noise) of a descriptor, the second type of measures characterizes the complementarity between multiple descriptors. Characterizing upstream the complementarity of shape descriptors is an alternative to the usual approach where the descriptors to be combined are selected by trial and error, considering the performance characteristics of the overall system. To illustrate the contribution of this protocol, we performed experimental studies using a set of descriptors and a set of symbols which are widely used by the community namely ART and SC descriptors and the GREC 2003 database.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; IF 1.091 Approved no  
  Call Number Admin @ si @VRT2011 Serial 1856  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: