|
Records |
Links |
|
Author |
David Aldavert; Marçal Rusiñol |


|
|
Title |
Synthetically generated semantic codebook for Bag-of-Visual-Words based word spotting |
Type |
Conference Article |
|
Year |
2018 |
Publication |
13th IAPR International Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages  |
223 - 228 |
|
|
Keywords |
Word Spotting; Bag of Visual Words; Synthetic Codebook; Semantic Information |
|
|
Abstract |
Word-spotting methods based on the Bag-ofVisual-Words framework have demonstrated a good retrieval performance even when used in a completely unsupervised manner. Although unsupervised approaches are suitable for
large document collections due to the cost of acquiring labeled data, these methods also present some drawbacks. For instance, having to train a suitable “codebook” for a certain dataset has a high computational cost. Therefore, in
this paper we present a database agnostic codebook which is trained from synthetic data. The aim of the proposed approach is to generate a codebook where the only information required is the type of script used in the document. The use of synthetic data also allows to easily incorporate semantic
information in the codebook generation. So, the proposed method is able to determine which set of codewords have a semantic representation of the descriptor feature space. Experimental results show that the resulting codebook attains a state-of-the-art performance while having a more compact representation. |
|
|
Address |
Viena; Austria; April 2018 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 600.084; 600.129; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ AlR2018b |
Serial |
3105 |
|
Permanent link to this record |
|
|
|
|
Author |
Lluis Pere de las Heras; Ahmed Sheraz; Marcus Liwicki; Ernest Valveny; Gemma Sanchez |


|
|
Title |
Statistical Segmentation and Structural Recognition for Floor Plan Interpretation |
Type |
Journal Article |
|
Year |
2014 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
17 |
Issue |
3 |
Pages  |
221-237 |
|
|
Keywords |
|
|
|
Abstract |
A generic method for floor plan analysis and interpretation is presented in this article. The method, which is mainly inspired by the way engineers draw and interpret floor plans, applies two recognition steps in a bottom-up manner. First, basic building blocks, i.e., walls, doors, and windows are detected using a statistical patch-based segmentation approach. Second, a graph is generated, and structural pattern recognition techniques are applied to further locate the main entities, i.e., rooms of the building. The proposed approach is able to analyze any type of floor plan regardless of the notation used. We have evaluated our method on different publicly available datasets of real architectural floor plans with different notations. The overall detection and recognition accuracy is about 95 %, which is significantly better than any other state-of-the-art method. Our approach is generic enough such that it could be easily adopted to the recognition and interpretation of any other printed machine-generated structured documents. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
1433-2833 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; ADAS; 600.076; 600.077 |
Approved |
no |
|
|
Call Number |
HSL2014 |
Serial |
2370 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; R.Roset; Josep Llados; C.Montaner |

|
|
Title |
Automatic Index Generation of Digitized Map Series by Coordinate Extraction and Interpretation |
Type |
Journal |
|
Year |
2011 |
Publication |
e-Perimetron |
Abbreviated Journal |
ePER |
|
|
Volume |
6 |
Issue |
4 |
Pages  |
219-229 |
|
|
Keywords |
|
|
|
Abstract |
By means of computer vision algorithms scanned images of maps are processed in order to extract relevant geographic information from printed coordinate pairs. The meaningful information is then transformed into georeferencing information for each single map sheet, and the complete set is compiled to produce a graphical index sheet for the map series along with relevant metadata. The whole process is fully automated and trained to attain maximum effectivity and throughput. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ RRL2011a |
Serial |
1765 |
|
Permanent link to this record |
|
|
|
|
Author |
Oriol Ramos Terrades; Alejandro Hector Toselli; Nicolas Serrano; Veronica Romero; Enrique Vidal; Alfons Juan |

|
|
Title |
Interactive layout analysis and transcription systems for historic handwritten documents |
Type |
Conference Article |
|
Year |
2010 |
Publication |
10th ACM Symposium on Document Engineering |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages  |
219–222 |
|
|
Keywords |
Handwriting recognition; Interactive predictive processing; Partial supervision; Interactive layout analysis |
|
|
Abstract |
The amount of digitized legacy documents has been rising dramatically over the last years due mainly to the increasing number of on-line digital libraries publishing this kind of documents, waiting to be classified and finally transcribed into a textual electronic format (such as ASCII or PDF). Nevertheless, most of the available fully-automatic applications addressing this task are far from being perfect and heavy and inefficient human intervention is often required to check and correct the results of such systems. In contrast, multimodal interactive-predictive approaches may allow the users to participate in the process helping the system to improve the overall performance. With this in mind, two sets of recent advances are introduced in this work: a novel interactive method for text block detection and two multimodal interactive handwritten text transcription systems which use active learning and interactive-predictive technologies in the recognition process. |
|
|
Address |
Manchester, United Kingdom |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ACM |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @RTS2010 |
Serial |
1857 |
|
Permanent link to this record |
|
|
|
|
Author |
Manuel Carbonell; Alicia Fornes; Mauricio Villegas; Josep Llados |

|
|
Title |
A Neural Model for Text Localization, Transcription and Named Entity Recognition in Full Pages |
Type |
Journal Article |
|
Year |
2020 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
136 |
Issue |
|
Pages  |
219-227 |
|
|
Keywords |
|
|
|
Abstract |
In the last years, the consolidation of deep neural network architectures for information extraction in document images has brought big improvements in the performance of each of the tasks involved in this process, consisting of text localization, transcription, and named entity recognition. However, this process is traditionally performed with separate methods for each task. In this work we propose an end-to-end model that combines a one stage object detection network with branches for the recognition of text and named entities respectively in a way that shared features can be learned simultaneously from the training error of each of the tasks. By doing so the model jointly performs handwritten text detection, transcription, and named entity recognition at page level with a single feed forward step. We exhaustively evaluate our approach on different datasets, discussing its advantages and limitations compared to sequential approaches. The results show that the model is capable of benefiting from shared features by simultaneously solving interdependent tasks. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 601.311; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ CFV2020 |
Serial |
3451 |
|
Permanent link to this record |
|
|
|
|
Author |
Alicia Fornes; Asma Bensalah; Cristina Carmona_Duarte; Jialuo Chen; Miguel A. Ferrer; Andreas Fischer; Josep Llados; Cristina Martin; Eloy Opisso; Rejean Plamondon; Anna Scius-Bertrand; Josep Maria Tormos |


|
|
Title |
The RPM3D Project: 3D Kinematics for Remote Patient Monitoring |
Type |
Conference Article |
|
Year |
2022 |
Publication |
Intertwining Graphonomics with Human Movements. 20th International Conference of the International Graphonomics Society, IGS 2022 |
Abbreviated Journal |
|
|
|
Volume |
13424 |
Issue |
|
Pages  |
217-226 |
|
|
Keywords |
Healthcare applications; Kinematic; Theory of Rapid Human Movements; Human activity recognition; Stroke rehabilitation; 3D kinematics |
|
|
Abstract |
This project explores the feasibility of remote patient monitoring based on the analysis of 3D movements captured with smartwatches. We base our analysis on the Kinematic Theory of Rapid Human Movement. We have validated our research in a real case scenario for stroke rehabilitation at the Guttmann Institute (https://www.guttmann.com/en/) (neurorehabilitation hospital), showing promising results. Our work could have a great impact in remote healthcare applications, improving the medical efficiency and reducing the healthcare costs. Future steps include more clinical validation, developing multi-modal analysis architectures (analysing data from sensors, images, audio, etc.), and exploring the application of our technology to monitor other neurodegenerative diseases. |
|
|
Address |
June 7-9, 2022, Las Palmas de Gran Canaria, Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IGS |
|
|
Notes |
DAG; 600.121; 600.162; 602.230; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ FBC2022 |
Serial |
3739 |
|
Permanent link to this record |
|
|
|
|
Author |
Jaume Gibert; Ernest Valveny; Horst Bunke |


|
|
Title |
Vocabulary Selection for Graph of Words Embedding |
Type |
Conference Article |
|
Year |
2011 |
Publication |
5th Iberian Conference on Pattern Recognition and Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
6669 |
Issue |
|
Pages  |
216-223 |
|
|
Keywords |
|
|
|
Abstract |
The Graph of Words Embedding consists in mapping every graph in a given dataset to a feature vector by counting unary and binary relations between node attributes of the graph. It has been shown to perform well for graphs with discrete label alphabets. In this paper we extend the methodology to graphs with n-dimensional continuous attributes by selecting node representatives. We propose three different discretization procedures for the attribute space and experimentally evaluate the dependence on both the selector and the number of node representatives. In the context of graph classification, the experimental results reveal that on two out of three public databases the proposed extension achieves superior performance over a standard reference system. |
|
|
Address |
Las Palmas de Gran Canaria. Spain |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
Berlin |
Editor |
Vitria, Jordi; Sanches, João Miguel Raposo; Hernández, Mario |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-3-642-21256-7 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IbPRIA |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ GVB2011b |
Serial |
1744 |
|
Permanent link to this record |
|
|
|
|
Author |
Marçal Rusiñol; Josep Llados |

|
|
Title |
Efficient Logo Retrieval Through Hashing Shape Context Descriptors |
Type |
Conference Article |
|
Year |
2010 |
Publication |
9th IAPR International Workshop on Document Analysis Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages  |
215–222 |
|
|
Keywords |
|
|
|
Abstract |
In this paper, we present an approach towards the retrieval of words from graphical document images. In graphical documents, due to presence of multi-oriented characters in non-structured layout, word indexing is a challenging task. The proposed approach uses recognition results of individual components to form character pairs with the neighboring components. An indexing scheme is designed to store the spatial description of components and to access them efficiently. Given a query text word (ascii/unicode format), the character pairs present in it are searched in the document. Next the retrieved character pairs are linked sequentially to form character string. Dynamic programming is applied to find different instances of query words. A string edit distance is used here to match the query word as the objective function. Recognition of multi-scale and multi-oriented character component is done using Support Vector Machine classifier. To consider multi-oriented character strings the features used in the SVM are invariant to character orientation. Experimental results show that the method is efficient to locate a query word from multi-oriented text in graphical documents. |
|
|
Address |
Boston; USA |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
DAG @ dag @ RuL2010b |
Serial |
1434 |
|
Permanent link to this record |
|
|
|
|
Author |
Pau Riba; Josep Llados; Alicia Fornes; Anjan Dutta |



|
|
Title |
Large-scale Graph Indexing using Binary Embeddings of Node Contexts |
Type |
Conference Article |
|
Year |
2015 |
Publication |
10th IAPR-TC15 Workshop on Graph-based Representations in Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
9069 |
Issue |
|
Pages  |
208-217 |
|
|
Keywords |
Graph matching; Graph indexing; Application in document analysis; Word spotting; Binary embedding |
|
|
Abstract |
Graph-based representations are experiencing a growing usage in visual recognition and retrieval due to their representational power in front of classical appearance-based representations in terms of feature vectors. Retrieving a query graph from a large dataset of graphs has the drawback of the high computational complexity required to compare the query and the target graphs. The most important property for a large-scale retrieval is the search time complexity to be sub-linear in the number of database examples. In this paper we propose a fast indexation formalism for graph retrieval. A binary embedding is defined as hashing keys for graph nodes. Given a database of labeled graphs, graph nodes are complemented with vectors of attributes representing their local context. Hence, each attribute counts the length of a walk of order k originated in a vertex with label l. Each attribute vector is converted to a binary code applying a binary-valued hash function. Therefore, graph retrieval is formulated in terms of finding target graphs in the database whose nodes have a small Hamming distance from the query nodes, easily computed with bitwise logical operators. As an application example, we validate the performance of the proposed methods in a handwritten word spotting scenario in images of historical documents. |
|
|
Address |
Beijing; China; May 2015 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer International Publishing |
Place of Publication |
|
Editor |
C.-L.Liu; B.Luo; W.G.Kropatsch; J.Cheng |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-319-18223-0 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GbRPR |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ RLF2015a |
Serial |
2618 |
|
Permanent link to this record |
|
|
|
|
Author |
P. Wang; V. Eglin; C. Garcia; C. Largeron; Josep Llados; Alicia Fornes |


|
|
Title |
A Novel Learning-free Word Spotting Approach Based on Graph Representation |
Type |
Conference Article |
|
Year |
2014 |
Publication |
11th IAPR International Workshop on Document Analysis and Systems |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages  |
207-211 |
|
|
Keywords |
|
|
|
Abstract |
Effective information retrieval on handwritten document images has always been a challenging task. In this paper, we propose a novel handwritten word spotting approach based on graph representation. The presented model comprises both topological and morphological signatures of handwriting. Skeleton-based graphs with the Shape Context labelled vertexes are established for connected components. Each word image is represented as a sequence of graphs. In order to be robust to the handwriting variations, an exhaustive merging process based on DTW alignment result is introduced in the similarity measure between word images. With respect to the computation complexity, an approximate graph edit distance approach using bipartite matching is employed for graph matching. The experiments on the George Washington dataset and the marriage records from the Barcelona Cathedral dataset demonstrate that the proposed approach outperforms the state-of-the-art structural methods. |
|
|
Address |
Tours; France; April 2014 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4799-3243-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
DAS |
|
|
Notes |
DAG; 600.061; 602.006; 600.077 |
Approved |
no |
|
|
Call Number |
Admin @ si @ WEG2014b |
Serial |
2517 |
|
Permanent link to this record |