toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Alicia Fornes; Anjan Dutta; Albert Gordo; Josep Llados edit   pdf
doi  openurl
  Title CVC-MUSCIMA: A Ground-Truth of Handwritten Music Score Images for Writer Identification and Staff Removal Type Journal Article
  Year 2012 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 15 Issue 3 Pages 243-251  
  Keywords Music scores; Handwritten documents; Writer identification; Staff removal; Performance evaluation; Graphics recognition; Ground truths  
  Abstract 0,405JCR
The analysis of music scores has been an active research field in the last decades. However, there are no publicly available databases of handwritten music scores for the research community. In this paper we present the CVC-MUSCIMA database and ground-truth of handwritten music score images. The dataset consists of 1,000 music sheets written by 50 different musicians. It has been especially designed for writer identification and staff removal tasks. In addition to the description of the dataset, ground-truth, partitioning and evaluation metrics, we also provide some base-line results for easing the comparison between different approaches.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG Approved no  
  Call Number Admin @ si @ FDG2012 Serial 2129  
Permanent link to this record
 

 
Author Partha Pratim Roy; Umapada Pal; Josep Llados; Mathieu Nicolas Delalandre edit   pdf
url  doi
openurl 
  Title Multi-oriented touching text character segmentation in graphical documents using dynamic programming Type Journal Article
  Year 2012 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 45 Issue 5 Pages 1972-1983  
  Keywords  
  Abstract 2,292 JCR
The touching character segmentation problem becomes complex when touching strings are multi-oriented. Moreover in graphical documents sometimes characters in a single-touching string have different orientations. Segmentation of such complex touching is more challenging. In this paper, we present a scheme towards the segmentation of English multi-oriented touching strings into individual characters. When two or more characters touch, they generate a big cavity region in the background portion. Based on the convex hull information, at first, we use this background information to find some initial points for segmentation of a touching string into possible primitives (a primitive consists of a single character or part of a character). Next, the primitives are merged to get optimum segmentation. A dynamic programming algorithm is applied for this purpose using the total likelihood of characters as the objective function. A SVM classifier is used to find the likelihood of a character. To consider multi-oriented touching strings the features used in the SVM are invariant to character orientation. Experiments were performed in different databases of real and synthetic touching characters and the results show that the method is efficient in segmenting touching characters of arbitrary orientations and sizes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 0031-3203 ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG Approved no  
  Call Number Admin @ si @ RPL2012a Serial 2133  
Permanent link to this record
 

 
Author Partha Pratim Roy; Umapada Pal; Josep Llados edit   pdf
doi  openurl
  Title Text line extraction in graphical documents using background and foreground Type Journal Article
  Year 2012 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 15 Issue 3 Pages 227-241  
  Keywords  
  Abstract 0,405 JCR
In graphical documents (e.g., maps, engineering drawings), artistic documents etc., the text lines are annotated in multiple orientations or curvilinear way to illustrate different locations or symbols. For the optical character recognition of such documents, individual text lines from the documents need to be extracted. In this paper, we propose a novel method to segment such text lines and the method is based on the foreground and background information of the text components. To effectively utilize the background information, a water reservoir concept is used here. In the proposed scheme, at first, individual components are detected and grouped into character clusters in a hierarchical way using size and positional information. Next, the clusters are extended in two extreme sides to determine potential candidate regions. Finally, with the help of these candidate regions,
individual lines are extracted. The experimental results are presented on different datasets of graphical documents, camera-based warped documents, noisy images containing seals, etc. The results demonstrate that our approach is robust and invariant to size and orientation of the text lines present in
the document.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1433-2833 ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG Approved no  
  Call Number Admin @ si @ RPL2012b Serial 2134  
Permanent link to this record
 

 
Author Jaume Gibert edit  openurl
  Title Vector Space Embedding of Graphs via Statistics of Labelling Information Type Book Whole
  Year 2012 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Pattern recognition is the task that aims at distinguishing objects among different classes. When such a task wants to be solved in an automatic way a crucial step is how to formally represent such patterns to the computer. Based on the different representational formalisms, we may distinguish between statistical and structural pattern recognition. The former describes objects as a set of measurements arranged in the form of what is called a feature vector. The latter assumes that relations between parts of the underlying objects need to be explicitly represented and thus it uses relational structures such as graphs for encoding their inherent information. Vector spaces are a very flexible mathematical structure that has allowed to come up with several efficient ways for the analysis of patterns under the form of feature vectors. Nevertheless, such a representation cannot explicitly cope with binary relations between parts of the objects and it is restricted to measure the exact same number of features for each pattern under study regardless of their complexity. Graph-based representations present the contrary situation. They can easily adapt to the inherent complexity of the patterns but introduce a problem of high computational complexity, hindering the design of efficient tools to process and analyse patterns.

Solving this paradox is the main goal of this thesis. The ideal situation for solving pattern recognition problems would be to represent the patterns using relational structures such as graphs, and to be able to use the wealthy repository of data processing tools from the statistical pattern recognition domain. An elegant solution to this problem is to transform the graph domain into a vector domain where any processing algorithm can be applied. In other words, by mapping each graph to a point in a vector space we automatically get access to the rich set of algorithms from the statistical domain to be applied in the graph domain. Such methodology is called graph embedding.

In this thesis we propose to associate feature vectors to graphs in a simple and very efficient way by just putting attention on the labelling information that graphs store. In particular, we count frequencies of node labels and of edges between labels. Although their locality, these features are able to robustly represent structurally global properties of graphs, when considered together in the form of a vector. We initially deal with the case of discrete attributed graphs, where features are easy to compute. The continuous case is tackled as a natural generalization of the discrete one, where rather than counting node and edge labelling instances, we count statistics of some representatives of them. We encounter how the proposed vectorial representations of graphs suffer from high dimensionality and correlation among components and we face these problems by feature selection algorithms. We also explore how the diversity of different embedding representations can be exploited in order to boost the performance of base classifiers in a multiple classifier systems framework. An extensive experimental evaluation finally shows how the methodology we propose can be efficiently computed and compete with other graph matching and embedding methodologies.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher Ediciones Graficas Rey Place of Publication Editor Ernest Valveny  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG Approved no  
  Call Number Admin @ si @ Gib2012 Serial 2204  
Permanent link to this record
 

 
Author Jaume Gibert edit  openurl
  Title Learning structural representations and graph matching paradigms in the context of object recognition Type Report
  Year 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 143 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG Approved no  
  Call Number Admin @ si @ Gib2009 Serial 2397  
Permanent link to this record
 

 
Author Farshad Nourbakhsh edit  openurl
  Title Colour logo recognition Type Report
  Year 2009 Publication CVC Technical Report Abbreviated Journal  
  Volume 145 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Computer Vision Center Thesis Master's thesis  
  Publisher Place of Publication Bellaterra, Barcelona Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG Approved no  
  Call Number Admin @ si @ Nou2009 Serial 2399  
Permanent link to this record
 

 
Author Marçal Rusiñol; K. Bertet; Jean-Marc Ogier; Josep Llados edit  doi
isbn  openurl
  Title Symbol Recognition Using a Concept Lattice of Graphical Patterns Type Book Chapter
  Year 2010 Publication Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers Abbreviated Journal  
  Volume 6020 Issue Pages 187-198  
  Keywords  
  Abstract In this paper we propose a new approach to recognize symbols by the use of a concept lattice. We propose to build a concept lattice in terms of graphical patterns. Each model symbol is decomposed in a set of composing graphical patterns taken as primitives. Each one of these primitives is described by boundary moment invariants. The obtained concept lattice relates which symbolic patterns compose a given graphical symbol. A Hasse diagram is derived from the context and is used to recognize symbols affected by noise. We present some preliminary results over a variation of the dataset of symbols from the GREC 2005 symbol recognition contest.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference (up)  
  Notes DAG Approved no  
  Call Number Admin @ si @ RBO2010 Serial 2407  
Permanent link to this record
 

 
Author Partha Pratim Roy; Umapada Pal; Josep Llados edit  doi
isbn  openurl
  Title Touching Text Character Localization in Graphical Documents using SIFT Type Book Chapter
  Year 2010 Publication Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers Abbreviated Journal  
  Volume 6020 Issue Pages 199-211  
  Keywords Support Vector Machine; Text Component; Graphical Line; Document Image; Scale Invariant Feature Transform  
  Abstract Interpretation of graphical document images is a challenging task as it requires proper understanding of text/graphics symbols present in such documents. Difficulties arise in graphical document recognition when text and symbol overlapped/touched. Intersection of text and symbols with graphical lines and curves occur frequently in graphical documents and hence separation of such symbols is very difficult.
Several pattern recognition and classification techniques exist to recognize isolated text/symbol. But, the touching/overlapping text and symbol recognition has not yet been dealt successfully. An interesting technique, Scale Invariant Feature Transform (SIFT), originally devised for object recognition can take care of overlapping problems. Even if SIFT features have emerged as a very powerful object descriptors, their employment in graphical documents context has not been investigated much. In this paper we present the adaptation of the SIFT approach in the context of text character localization (spotting) in graphical documents. We evaluate the applicability of this technique in such documents and discuss the scope of improvement by combining some state-of-the-art approaches.
 
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference (up)  
  Notes DAG Approved no  
  Call Number Admin @ si @ RPL2010c Serial 2408  
Permanent link to this record
 

 
Author Nuria Cirera edit  openurl
  Title Recognition of Handwritten Historical Documents Type Report
  Year 2012 Publication CVC Technical Report Abbreviated Journal  
  Volume 174 Issue Pages  
  Keywords  
  Abstract  
  Address  
  Corporate Author Thesis Master's thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG Approved no  
  Call Number Admin @ si @ Cir2012 Serial 2416  
Permanent link to this record
 

 
Author T.Chauhan; E.Perales; Kaida Xiao; E.Hird ; Dimosthenis Karatzas; Sophie Wuerger edit  doi
openurl 
  Title The achromatic locus: Effect of navigation direction in color space Type Journal Article
  Year 2014 Publication Journal of Vision Abbreviated Journal VSS  
  Volume 14 (1) Issue 25 Pages 1-11  
  Keywords achromatic; unique hues; color constancy; luminance; color space  
  Abstract 5Y Impact Factor: 2.99 / 1st (Ophthalmology)
An achromatic stimulus is defined as a patch of light that is devoid of any hue. This is usually achieved by asking observers to adjust the stimulus such that it looks neither red nor green and at the same time neither yellow nor blue. Despite the theoretical and practical importance of the achromatic locus, little is known about the variability in these settings. The main purpose of the current study was to evaluate whether achromatic settings were dependent on the task of the observers, namely the navigation direction in color space. Observers could either adjust the test patch along the two chromatic axes in the CIE u*v* diagram or, alternatively, navigate along the unique-hue lines. Our main result is that the navigation method affects the reliability of these achromatic settings. Observers are able to make more reliable achromatic settings when adjusting the test patch along the directions defined by the four unique hues as opposed to navigating along the main axes in the commonly used CIE u*v* chromaticity plane. This result holds across different ambient viewing conditions (Dark, Daylight, Cool White Fluorescent) and different test luminance levels (5, 20, and 50 cd/m2). The reduced variability in the achromatic settings is consistent with the idea that internal color representations are more aligned with the unique-hue lines than the u* and v* axes.
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference (up)  
  Notes DAG; 600.077 Approved no  
  Call Number Admin @ si @ CPX2014 Serial 2418  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: