|
Records |
Links |
|
Author |
Mohamed Ali Souibgui; Alicia Fornes; Yousri Kessentini; Beata Megyesi |
|
|
Title |
Few shots are all you need: A progressive learning approach for low resource handwritten text recognition |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Pattern Recognition Letters |
Abbreviated Journal |
PRL |
|
|
Volume |
160 |
Issue |
|
Pages |
43-49 |
|
|
Keywords |
|
|
|
Abstract |
Handwritten text recognition in low resource scenarios, such as manuscripts with rare alphabets, is a challenging problem. In this paper, we propose a few-shot learning-based handwriting recognition approach that significantly reduces the human annotation process, by requiring only a few images of each alphabet symbols. The method consists of detecting all the symbols of a given alphabet in a textline image and decoding the obtained similarity scores to the final sequence of transcribed symbols. Our model is first pretrained on synthetic line images generated from an alphabet, which could differ from the alphabet of the target domain. A second training step is then applied to reduce the gap between the source and the target data. Since this retraining would require annotation of thousands of handwritten symbols together with their bounding boxes, we propose to avoid such human effort through an unsupervised progressive learning approach that automatically assigns pseudo-labels to the unlabeled data. The evaluation on different datasets shows that our model can lead to competitive results with a significant reduction in human effort. The code will be publicly available in the following repository: https://github.com/dali92002/HTRbyMatching |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Elsevier |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.162; 602.230 |
Approved |
no |
|
|
Call Number |
Admin @ si @ SFK2022 |
Serial |
3736 |
|
Permanent link to this record |
|
|
|
|
Author |
Joana Maria Pujadas-Mora; Alicia Fornes; Oriol Ramos Terrades; Josep Llados; Jialuo Chen; Miquel Valls-Figols; Anna Cabre |
|
|
Title |
The Barcelona Historical Marriage Database and the Baix Llobregat Demographic Database. From Algorithms for Handwriting Recognition to Individual-Level Demographic and Socioeconomic Data |
Type |
Journal |
|
Year |
2022 |
Publication |
Historical Life Course Studies |
Abbreviated Journal |
HLCS |
|
|
Volume |
12 |
Issue |
|
Pages |
99-132 |
|
|
Keywords |
Individual demographic databases; Computer vision, Record linkage; Social mobility; Inequality; Migration; Word spotting; Handwriting recognition; Local censuses; Marriage Licences |
|
|
Abstract |
The Barcelona Historical Marriage Database (BHMD) gathers records of the more than 600,000 marriages celebrated in the Diocese of Barcelona and their taxation registered in Barcelona Cathedral's so-called Marriage Licenses Books for the long period 1451–1905 and the BALL Demographic Database brings together the individual information recorded in the population registers, censuses and fiscal censuses of the main municipalities of the county of Baix Llobregat (Barcelona). In this ongoing collection 263,786 individual observations have been assembled, dating from the period between 1828 and 1965 by December 2020. The two databases started as part of different interdisciplinary research projects at the crossroads of Historical Demography and Computer Vision. Their construction uses artificial intelligence and computer vision methods as Handwriting Recognition to reduce the time of execution. However, its current state still requires some human intervention which explains the implemented crowdsourcing and game sourcing experiences. Moreover, knowledge graph techniques have allowed the application of advanced record linkage to link the same individuals and families across time and space. Moreover, we will discuss the main research lines using both databases developed so far in historical demography. |
|
|
Address |
June 23, 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.162; 602.230; 600.140 |
Approved |
no |
|
|
Call Number |
Admin @ si @ PFR2022 |
Serial |
3737 |
|
Permanent link to this record |
|
|
|
|
Author |
Arnau Baro |
|
|
Title |
Reading Music Systems: From Deep Optical Music Recognition to Contextual Methods |
Type |
Book Whole |
|
Year |
2022 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
The transcription of sheet music into some machine-readable format can be carried out manually. However, the complexity of music notation inevitably leads to burdensome software for music score editing, which makes the whole process
very time-consuming and prone to errors. Consequently, automatic transcription
systems for musical documents represent interesting tools.
Document analysis is the subject that deals with the extraction and processing
of documents through image and pattern recognition. It is a branch of computer
vision. Taking music scores as source, the field devoted to address this task is
known as Optical Music Recognition (OMR). Typically, an OMR system takes an
image of a music score and automatically extracts its content into some symbolic
structure such as MEI or MusicXML.
In this dissertation, we have investigated different methods for recognizing a
single staff section (e.g. scores for violin, flute, etc.), much in the same way as most text recognition research focuses on recognizing words appearing in a given line image. These methods are based in two different methodologies. On the one hand, we present two methods based on Recurrent Neural Networks, in particular, the
Long Short-Term Memory Neural Network. On the other hand, a method based on Sequence to Sequence models is detailed.
Music context is needed to improve the OMR results, just like language models
and dictionaries help in handwriting recognition. For example, syntactical rules
and grammars could be easily defined to cope with the ambiguities in the rhythm.
In music theory, for example, the time signature defines the amount of beats per
bar unit. Thus, in the second part of this dissertation, different methodologies
have been investigated to improve the OMR recognition. We have explored three
different methods: (a) a graphic tree-structure representation, Dendrograms, that
joins, at each level, its primitives following a set of rules, (b) the incorporation of Language Models to model the probability of a sequence of tokens, and (c) graph neural networks to analyze the music scores to avoid meaningless relationships between music primitives.
Finally, to train all these methodologies, and given the method-specificity of
the datasets in the literature, we have created four different music datasets. Two of them are synthetic with a modern or old handwritten appearance, whereas the
other two are real handwritten scores, being one of them modern and the other
old. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
IMPRIMA |
Place of Publication |
|
Editor |
Alicia Fornes |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-124793-8-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; |
Approved |
no |
|
|
Call Number |
Admin @ si @ Bar2022 |
Serial |
3754 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten |
|
|
Title |
A Bitter-Sweet Symphony on Vision and Language: Bias and World Knowledge |
Type |
Book Whole |
|
Year |
2022 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Vision and Language are broadly regarded as cornerstones of intelligence. Even though language and vision have different aims – language having the purpose of communication, transmission of information and vision having the purpose of constructing mental representations around us to navigate and interact with objects – they cooperate and depend on one another in many tasks we perform effortlessly. This reliance is actively being studied in various Computer Vision tasks, e.g. image captioning, visual question answering, image-sentence retrieval, phrase grounding, just to name a few. All of these tasks share the inherent difficulty of the aligning the two modalities, while being robust to language
priors and various biases existing in the datasets. One of the ultimate goal for vision and language research is to be able to inject world knowledge while getting rid of the biases that come with the datasets. In this thesis, we mainly focus on two vision and language tasks, namely Image Captioning and Scene-Text Visual Question Answering (STVQA).
In both domains, we start by defining a new task that requires the utilization of world knowledge and in both tasks, we find that the models commonly employed are prone to biases that exist in the data. Concretely, we introduce new tasks and discover several problems that impede performance at each level and provide remedies or possible solutions in each chapter: i) We define a new task to move beyond Image Captioning to Image Interpretation that can utilize Named Entities in the form of world knowledge. ii) We study the object hallucination problem in classic Image Captioning systems and develop an architecture-agnostic solution. iii) We define a sub-task of Visual Question Answering that requires reading the text in the image (STVQA), where we highlight the limitations of current models. iv) We propose an architecture for the STVQA task that can point to the answer in the image and show how to combine it with classic VQA models. v) We show how far language can get us in STVQA and discover yet another bias which causes the models to disregard the image while doing Visual Question Answering. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
IMPRIMA |
Place of Publication |
|
Editor |
Dimosthenis Karatzas;Lluis Gomez |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-124793-5-5 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ Bit2022 |
Serial |
3755 |
|
Permanent link to this record |
|
|
|
|
Author |
Andres Mafla |
|
|
Title |
Leveraging Scene Text Information for Image Interpretation |
Type |
Book Whole |
|
Year |
2022 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Until recently, most computer vision models remained illiterate, largely ignoring the semantically rich and explicit information contained in scene text. Recent progress in scene text detection and recognition has recently allowed exploring its role in a diverse set of open computer vision problems, e.g. image classification, image-text retrieval, image captioning, and visual question answering to name a few. The explicit semantics of scene text closely requires specific modeling similar to language. However, scene text is a particular signal that has to be interpreted according to a comprehensive perspective that encapsulates all the visual cues in an image. Incorporating this information is a straightforward task for humans, but if we are unfamiliar with a language or scripture, achieving a complete world understanding is impossible (e.a. visiting a foreign country with a different alphabet). Despite the importance of scene text, modeling it requires considering the several ways in which scene text interacts with an image, processing and fusing an additional modality. In this thesis, we mainly focus
on two tasks, scene text-based fine-grained image classification, and cross-modal retrieval. In both studied tasks we identify existing limitations in current approaches and propose plausible solutions. Concretely, in each chapter: i) We define a compact way to embed scene text that generalizes to unseen words at training time while performing in real-time. ii) We incorporate the previously learned scene text embedding to create an image-level descriptor that overcomes optical character recognition (OCR) errors which is well-suited to the fine-grained image classification task. iii) We design a region-level reasoning network that learns the interaction through semantics among salient visual regions and scene text instances. iv) We employ scene text information in image-text matching and introduce the Scene Text Aware Cross-Modal retrieval StacMR task. We gather a dataset that incorporates scene text and design a model suited for the newly studied modality. v) We identify the drawbacks of current retrieval metrics in cross-modal retrieval. An image captioning metric is proposed as a way of better evaluating semantics in retrieved results. Ample experimentation shows that incorporating such semantics into a model yields better semantic results while
requiring significantly less data to converge. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
IMPRIMA |
Place of Publication |
|
Editor |
Dimosthenis Karatzas;Lluis Gomez |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-124793-6-2 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ Maf2022 |
Serial |
3756 |
|
Permanent link to this record |
|
|
|
|
Author |
Mohamed Ali Souibgui |
|
|
Title |
Document Image Enhancement and Recognition in Low Resource Scenarios: Application to Ciphers and Handwritten Text |
Type |
Book Whole |
|
Year |
2022 |
Publication |
PhD Thesis, Universitat Autonoma de Barcelona-CVC |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
In this thesis, we propose different contributions with the goal of enhancing and recognizing historical handwritten document images, especially the ones with rare scripts, such as cipher documents.
In the first part, some effective end-to-end models for Document Image Enhancement (DIE) using deep learning models were presented. First, Generative Adversarial Networks (cGAN) for different tasks (document clean-up, binarization, deblurring, and watermark removal) were explored. Next, we further improve the results by recovering the degraded document images into a clean and readable form by integrating a text recognizer into the cGAN model to promote the generated document image to be more readable. Afterward, we present a new encoder-decoder architecture based on vision transformers to enhance both machine-printed and handwritten document images, in an end-to-end fashion.
The second part of the thesis addresses Handwritten Text Recognition (HTR) in low resource scenarios, i.e. when only few labeled training data is available. We propose novel methods for recognizing ciphers with rare scripts. First, a few-shot object detection based method was proposed. Then, we incorporate a progressive learning strategy that automatically assignspseudo-labels to a set of unlabeled data to reduce the human labor of annotating few pages while maintaining the good performance of the model. Secondly, a data generation technique based on Bayesian Program Learning (BPL) is proposed to overcome the lack of data in such rare scripts. Thirdly, we propose a Text-Degradation Invariant Auto Encoder (Text-DIAE). This latter self-supervised model is designed to tackle two tasks, text recognition and document image enhancement. The proposed model does not exhibit limitations of previous state-of-the-art methods based on contrastive losses, while at the same time, it requires substantially fewer data samples to converge.
In the third part of the thesis, we analyze, from the user perspective, the usage of HTR systems in low resource scenarios. This contrasts with the usual research on HTR, which often focuses on technical aspects only and rarely devotes efforts on implementing software tools for scholars in Humanities. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
Ph.D. thesis |
|
|
Publisher |
IMPRIMA |
Place of Publication |
|
Editor |
Alicia Fornes;Yousri Kessentini |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-84-124793-8-6 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ Sou2022 |
Serial |
3757 |
|
Permanent link to this record |
|
|
|
|
Author |
Kunal Biswas; Palaiahnakote Shivakumara; Umapada Pal; Tong Lu; Michel Blumenstein; Josep Llados |
|
|
Title |
Classification of aesthetic natural scene images using statistical and semantic features |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
82 |
Issue |
9 |
Pages |
13507-13532 |
|
|
Keywords |
|
|
|
Abstract |
Aesthetic image analysis is essential for improving the performance of multimedia image retrieval systems, especially from a repository of social media and multimedia content stored on mobile devices. This paper presents a novel method for classifying aesthetic natural scene images by studying the naturalness of image content using statistical features, and reading text in the images using semantic features. Unlike existing methods that focus only on image quality with human information, the proposed approach focuses on image features as well as text-based semantic features without human intervention to reduce the gap between subjectivity and objectivity in the classification. The aesthetic classes considered in this work are (i) Very Pleasant, (ii) Pleasant, (iii) Normal and (iv) Unpleasant. The naturalness is represented by features of focus, defocus, perceived brightness, perceived contrast, blurriness and noisiness, while semantics are represented by text recognition, description of the images and labels of images, profile pictures, and banner images. Furthermore, a deep learning model is proposed in a novel way to fuse statistical and semantic features for the classification of aesthetic natural scene images. Experiments on our own dataset and the standard datasets demonstrate that the proposed approach achieves 92.74%, 88.67% and 83.22% average classification rates on our own dataset, AVA dataset and CUHKPQ dataset, respectively. Furthermore, a comparative study of the proposed model with the existing methods shows that the proposed method is effective for the classification of aesthetic social media images. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ BSP2023 |
Serial |
3873 |
|
Permanent link to this record |
|
|
|
|
Author |
Ruben Tito; Dimosthenis Karatzas; Ernest Valveny |
|
|
Title |
Hierarchical multimodal transformers for Multi-Page DocVQA |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
144 |
Issue |
|
Pages |
109834 |
|
|
Keywords |
|
|
|
Abstract |
Document Visual Question Answering (DocVQA) refers to the task of answering questions from document images. Existing work on DocVQA only considers single-page documents. However, in real scenarios documents are mostly composed of multiple pages that should be processed altogether. In this work we extend DocVQA to the multi-page scenario. For that, we first create a new dataset, MP-DocVQA, where questions are posed over multi-page documents instead of single pages. Second, we propose a new hierarchical method, Hi-VT5, based on the T5 architecture, that overcomes the limitations of current methods to process long multi-page documents. The proposed method is based on a hierarchical transformer architecture where the encoder summarizes the most relevant information of every page and then, the decoder takes this summarized information to generate the final answer. Through extensive experimentation, we demonstrate that our method is able, in a single stage, to answer the questions and provide the page that contains the relevant information to find the answer, which can be used as a kind of explainability measure. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
ISSN 0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.155; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ TKV2023 |
Serial |
3825 |
|
Permanent link to this record |
|
|
|
|
Author |
Souhail Bakkali; Zuheng Ming; Mickael Coustaty; Marçal Rusiñol; Oriol Ramos Terrades |
|
|
Title |
VLCDoC: Vision-Language Contrastive Pre-Training Model for Cross-Modal Document Classification |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
139 |
Issue |
|
Pages |
109419 |
|
|
Keywords |
|
|
|
Abstract |
Multimodal learning from document data has achieved great success lately as it allows to pre-train semantically meaningful features as a prior into a learnable downstream approach. In this paper, we approach the document classification problem by learning cross-modal representations through language and vision cues, considering intra- and inter-modality relationships. Instead of merging features from different modalities into a common representation space, the proposed method exploits high-level interactions and learns relevant semantic information from effective attention flows within and across modalities. The proposed learning objective is devised between intra- and inter-modality alignment tasks, where the similarity distribution per task is computed by contracting positive sample pairs while simultaneously contrasting negative ones in the common feature representation space}. Extensive experiments on public document classification datasets demonstrate the effectiveness and the generalization capacity of our model on both low-scale and large-scale datasets. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
ISSN 0031-3203 |
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.140; 600.121 |
Approved |
no |
|
|
Call Number |
Admin @ si @ BMC2023 |
Serial |
3826 |
|
Permanent link to this record |
|
|
|
|
Author |
Ruben Tito; Dimosthenis Karatzas; Ernest Valveny |
|
|
Title |
Hierarchical multimodal transformers for Multipage DocVQA |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
144 |
Issue |
109834 |
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Existing work on DocVQA only considers single-page documents. However, in real applications documents are mostly composed of multiple pages that should be processed altogether. In this work, we propose a new multimodal hierarchical method Hi-VT5, that overcomes the limitations of current methods to process long multipage documents. In contrast to previous hierarchical methods that focus on different semantic granularity (He et al., 2021) or different subtasks (Zhou et al., 2022) used in image classification. Our method is a hierarchical transformer architecture where the encoder learns to summarize the most relevant information of every page and then, the decoder uses this summarized representation to generate the final answer, following a bottom-up approach. Moreover, due to the lack of multipage DocVQA datasets, we also introduce MP-DocVQA, an extension of SP-DocVQA where questions are posed over multipage documents instead of single pages. Through extensive experimentation, we demonstrate that Hi-VT5 is able, in a single stage, to answer the questions and provide the page that contains the answer, which can be used as a kind of explainability measure. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number |
Admin @ si @ TKV2023 |
Serial |
3836 |
|
Permanent link to this record |