toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
   print
  Record Links
Author (up) Ruben Tito; Dimosthenis Karatzas; Ernest Valveny edit   pdf
url  openurl
  Title Hierarchical multimodal transformers for Multipage DocVQA Type Journal Article
  Year 2023 Publication Pattern Recognition Abbreviated Journal PR  
  Volume 144 Issue 109834 Pages  
  Keywords  
  Abstract Existing work on DocVQA only considers single-page documents. However, in real applications documents are mostly composed of multiple pages that should be processed altogether. In this work, we propose a new multimodal hierarchical method Hi-VT5, that overcomes the limitations of current methods to process long multipage documents. In contrast to previous hierarchical methods that focus on different semantic granularity (He et al., 2021) or different subtasks (Zhou et al., 2022) used in image classification. Our method is a hierarchical transformer architecture where the encoder learns to summarize the most relevant information of every page and then, the decoder uses this summarized representation to generate the final answer, following a bottom-up approach. Moreover, due to the lack of multipage DocVQA datasets, we also introduce MP-DocVQA, an extension of SP-DocVQA where questions are posed over multipage documents instead of single pages. Through extensive experimentation, we demonstrate that Hi-VT5 is able, in a single stage, to answer the questions and provide the page that contains the answer, which can be used as a kind of explainability measure.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number Admin @ si @ TKV2023 Serial 3836  
Permanent link to this record
Select All    Deselect All
 |   | 
Details
   print

Save Citations:
Export Records: