toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Dena Bazazian; Raul Gomez; Anguelos Nicolaou; Lluis Gomez; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
url  openurl
  Title Fast: Facilitated and accurate scene text proposals through fcn guided pruning Type Journal Article
  Year 2019 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 119 Issue Pages 112-120  
  Keywords  
  Abstract Class-specific text proposal algorithms can efficiently reduce the search space for possible text object locations in an image. In this paper we combine the Text Proposals algorithm with Fully Convolutional Networks to efficiently reduce the number of proposals while maintaining the same recall level and thus gaining a significant speed up. Our experiments demonstrate that such text proposal approaches yield significantly higher recall rates than state-of-the-art text localization techniques, while also producing better-quality localizations. Our results on the ICDAR 2015 Robust Reading Competition (Challenge 4) and the COCO-text datasets show that, when combined with strong word classifiers, this recall margin leads to state-of-the-art results in end-to-end scene text recognition.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.084; 600.121; 600.129 Approved no  
  Call Number (up) Admin @ si @ BGN2019 Serial 3342  
Permanent link to this record
 

 
Author R. Bertrand; P. Gomez-Krämer; Oriol Ramos Terrades; P. Franco; Jean-Marc Ogier edit   pdf
doi  openurl
  Title A System Based On Intrinsic Features for Fraudulent Document Detection Type Conference Article
  Year 2013 Publication 12th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 106-110  
  Keywords paper document; document analysis; fraudulent document; forgery; fake  
  Abstract Paper documents still represent a large amount of information supports used nowadays and may contain critical data. Even though official documents are secured with techniques such as printed patterns or artwork, paper documents suffer froma lack of security.
However, the high availability of cheap scanning and printing hardware allows non-experts to easily create fake documents. As the use of a watermarking system added during the document production step is hardly possible, solutions have to be proposed to distinguish a genuine document from a forged one.
In this paper, we present an automatic forgery detection method based on document’s intrinsic features at character level. This method is based on the one hand on outlier character detection in a discriminant feature space and on the other hand on the detection of strictly similar characters. Therefore, a feature set iscomputed for all characters. Then, based on a distance between characters of the same class.
 
  Address Washington; USA; August 2013  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN 1520-5363 ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.061 Approved no  
  Call Number (up) Admin @ si @ BGR2013a Serial 2332  
Permanent link to this record
 

 
Author Ali Furkan Biten; Lluis Gomez; Marçal Rusiñol; Dimosthenis Karatzas edit   pdf
url  doi
openurl 
  Title Good News, Everyone! Context driven entity-aware captioning for news images Type Conference Article
  Year 2019 Publication 32nd IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 12458-12467  
  Keywords  
  Abstract Current image captioning systems perform at a merely descriptive level, essentially enumerating the objects in the scene and their relations. Humans, on the contrary, interpret images by integrating several sources of prior knowledge of the world. In this work, we aim to take a step closer to producing captions that offer a plausible interpretation of the scene, by integrating such contextual information into the captioning pipeline. For this we focus on the captioning of images used to illustrate news articles. We propose a novel captioning method that is able to leverage contextual information provided by the text of news articles associated with an image. Our model is able to selectively draw information from the article guided by visual cues, and to dynamically extend the output dictionary to out-of-vocabulary named entities that appear in the context source. Furthermore we introduce“ GoodNews”, the largest news image captioning dataset in the literature and demonstrate state-of-the-art results.  
  Address Long beach; California; USA; june 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes DAG; 600.129; 600.135; 601.338; 600.121 Approved no  
  Call Number (up) Admin @ si @ BGR2019 Serial 3289  
Permanent link to this record
 

 
Author Ali Furkan Biten edit  isbn
openurl 
  Title A Bitter-Sweet Symphony on Vision and Language: Bias and World Knowledge Type Book Whole
  Year 2020 Publication PhD Thesis, Universitat Autonoma de Barcelona-CVC Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Vision and Language are broadly regarded as cornerstones of intelligence. Even though language and vision have different aims – language having the purpose of communication, transmission of information and vision having the purpose of constructing mental representations around us to navigate and interact with objects – they cooperate and depend on one another in many tasks we perform effortlessly. This reliance is actively being studied in various Computer Vision tasks, e.g. image captioning, visual question answering, image-sentence retrieval, phrase grounding, just to name a few. All of these tasks share the inherent difficulty of the aligning the two modalities, while being robust to language
priors and various biases existing in the datasets. One of the ultimate goal for vision and language research is to be able to inject world knowledge while getting rid of the biases that come with the datasets. In this thesis, we mainly focus on two vision and language tasks, namely Image Captioning and Scene-Text Visual Question Answering (STVQA).
In both domains, we start by defining a new task that requires the utilization of world knowledge and in both tasks, we find that the models commonly employed are prone to biases that exist in the data. Concretely, we introduce new tasks and discover several problems that impede performance at each level and provide remedies or possible solutions in each chapter: i) We define a new task to move beyond Image Captioning to Image Interpretation that can utilize Named Entities in the form of world knowledge. ii) We study the object hallucination problem in classic Image Captioning systems and develop an architecture-agnostic solution. iii) We define a sub-task of Visual Question Answering that requires reading the text in the image (STVQA), where we highlight the limitations of current models. iv) We propose an architecture for the STVQA task that can point to the answer in the image and show how to combine it with classic VQA models. v) We show how far language can get us in STVQA and discover yet another bias which causes the models to disregard the image while doing Visual Question Answering.
 
  Address  
  Corporate Author Thesis Ph.D. thesis  
  Publisher IMPRIMA Place of Publication Editor Dimosthenis Karatzas;Lluis Gomez  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-84-124793-5-5 Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @ Bit2022 Serial 3755  
Permanent link to this record
 

 
Author Dena Bazazian; Dimosthenis Karatzas; Andrew Bagdanov edit   pdf
openurl 
  Title Soft-PHOC Descriptor for End-to-End Word Spotting in Egocentric Scene Images Type Conference Article
  Year 2018 Publication International Workshop on Egocentric Perception, Interaction and Computing at ECCV Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Word spotting in natural scene images has many applications in scene understanding and visual assistance. We propose Soft-PHOC, an intermediate representation of images based on character probability maps. Our representation extends the concept of the Pyramidal Histogram Of Characters (PHOC) by exploiting Fully Convolutional Networks to derive a pixel-wise mapping of the character distribution within candidate word regions. We show how to use our descriptors for word spotting tasks in egocentric camera streams through an efficient text line proposal algorithm. This is based on the Hough Transform over character attribute maps followed by scoring using Dynamic Time Warping (DTW). We evaluate our results on ICDAR 2015 Challenge 4 dataset of incidental scene text captured by an egocentric camera.  
  Address Munich; Alemanya; September 2018  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ECCVW  
  Notes DAG; 600.129; 600.121; Approved no  
  Call Number (up) Admin @ si @ BKB2018b Serial 3174  
Permanent link to this record
 

 
Author Ali Furkan Biten; Andres Mafla; Lluis Gomez; Dimosthenis Karatzas edit   pdf
openurl 
  Title Is An Image Worth Five Sentences? A New Look into Semantics for Image-Text Matching Type Conference Article
  Year 2022 Publication Winter Conference on Applications of Computer Vision Abbreviated Journal  
  Volume Issue Pages 1391-1400  
  Keywords  
  Abstract The task of image-text matching aims to map representations from different modalities into a common joint visual-textual embedding. However, the most widely used datasets for this task, MSCOCO and Flickr30K, are actually image captioning datasets that offer a very limited set of relationships between images and sentences in their ground-truth annotations. This limited ground truth information forces us to use evaluation metrics based on binary relevance: given a sentence query we consider only one image as relevant. However, many other relevant images or captions may be present in the dataset. In this work, we propose two metrics that evaluate the degree of semantic relevance of retrieved items, independently of their annotated binary relevance. Additionally, we incorporate a novel strategy that uses an image captioning metric, CIDEr, to define a Semantic Adaptive Margin (SAM) to be optimized in a standard triplet loss. By incorporating our formulation to existing models, a large improvement is obtained in scenarios where available training data is limited. We also demonstrate that the performance on the annotated image-caption pairs is maintained while improving on other non-annotated relevant items when employing the full training set. The code for our new metric can be found at github. com/furkanbiten/ncsmetric and the model implementation at github. com/andrespmd/semanticadaptive_margin.  
  Address Virtual; Waikoloa; Hawai; USA; January 2022  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference WACV  
  Notes DAG; 600.155; 302.105; Approved no  
  Call Number (up) Admin @ si @ BMG2022 Serial 3663  
Permanent link to this record
 

 
Author Q. Bao; Marçal Rusiñol; M.Coustaty; Muhammad Muzzamil Luqman; C.D. Tran; Jean-Marc Ogier edit   pdf
doi  openurl
  Title Delaunay triangulation-based features for Camera-based document image retrieval system Type Conference Article
  Year 2016 Publication 12th IAPR Workshop on Document Analysis Systems Abbreviated Journal  
  Volume Issue Pages 1-6  
  Keywords Camera-based Document Image Retrieval; Delaunay Triangulation; Feature descriptors; Indexing  
  Abstract In this paper, we propose a new feature vector, named DElaunay TRIangulation-based Features (DETRIF), for real-time camera-based document image retrieval. DETRIF is computed based on the geometrical constraints from each pair of adjacency triangles in delaunay triangulation which is constructed from centroids of connected components. Besides, we employ a hashing-based indexing system in order to evaluate the performance of DETRIF and to compare it with other systems such as LLAH and SRIF. The experimentation is carried out on two datasets comprising of 400 heterogeneous-content complex linguistic map images (huge size, 9800 X 11768 pixels resolution)and 700 textual document images.  
  Address Santorini; Greece; April 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference DAS  
  Notes DAG; 600.061; 600.084; 600.077 Approved no  
  Call Number (up) Admin @ si @ BRC2016 Serial 2757  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit   pdf
doi  openurl
  Title Optical Music Recognition by Recurrent Neural Networks Type Conference Article
  Year 2017 Publication 14th IAPR International Workshop on Graphics Recognition Abbreviated Journal  
  Volume Issue Pages 25-26  
  Keywords Optical Music Recognition; Recurrent Neural Network; Long Short-Term Memory  
  Abstract Optical Music Recognition is the task of transcribing a music score into a machine readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number (up) Admin @ si @ BRC2017 Serial 3056  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit   pdf
doi  isbn
openurl 
  Title Optical Music Recognition by Long Short-Term Memory Networks Type Book Chapter
  Year 2018 Publication Graphics Recognition. Current Trends and Evolutions Abbreviated Journal  
  Volume 11009 Issue Pages 81-95  
  Keywords Optical Music Recognition; Recurrent Neural Network; Long ShortTerm Memory  
  Abstract Optical Music Recognition refers to the task of transcribing the image of a music score into a machine-readable format. Many music scores are written in a single staff, and therefore, they could be treated as a sequence. Therefore, this work explores the use of Long Short-Term Memory (LSTM) Recurrent Neural Networks for reading the music score sequentially, where the LSTM helps in keeping the context. For training, we have used a synthetic dataset of more than 40000 images, labeled at primitive level. The experimental results are promising, showing the benefits of our approach.  
  Address  
  Corporate Author Thesis  
  Publisher Springer Place of Publication Editor A. Fornes, B. Lamiroy  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN ISBN 978-3-030-02283-9 Medium  
  Area Expedition Conference GREC  
  Notes DAG; 600.097; 601.302; 601.330; 600.121 Approved no  
  Call Number (up) Admin @ si @ BRC2018 Serial 3227  
Permanent link to this record
 

 
Author Arnau Baro; Pau Riba; Jorge Calvo-Zaragoza; Alicia Fornes edit  url
openurl 
  Title From Optical Music Recognition to Handwritten Music Recognition: a Baseline Type Journal Article
  Year 2019 Publication Pattern Recognition Letters Abbreviated Journal PRL  
  Volume 123 Issue Pages 1-8  
  Keywords  
  Abstract Optical Music Recognition (OMR) is the branch of document image analysis that aims to convert images of musical scores into a computer-readable format. Despite decades of research, the recognition of handwritten music scores, concretely the Western notation, is still an open problem, and the few existing works only focus on a specific stage of OMR. In this work, we propose a full Handwritten Music Recognition (HMR) system based on Convolutional Recurrent Neural Networks, data augmentation and transfer learning, that can serve as a baseline for the research community.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 601.302; 601.330; 600.140; 600.121 Approved no  
  Call Number (up) Admin @ si @ BRC2019 Serial 3275  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: