|
Records |
Links |
|
Author |
Emanuel Indermühle; Volkmar Frinken; Horst Bunke |


|
|
Title |
Mode Detection in Online Handwritten Documents using BLSTM Neural Networks |
Type |
Conference Article |
|
Year |
2012 |
Publication |
13th International Conference on Frontiers in Handwriting Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
302-307 |
|
|
Keywords |
|
|
|
Abstract |
Mode detection in online handwritten documents refers to the process of distinguishing different types of contents, such as text, formulas, diagrams, or tables, one from another. In this paper a new approach to mode detection is proposed that uses bidirectional long-short term memory (BLSTM) neural networks. The BLSTM neural network is a novel type of recursive neural network that has been successfully applied in speech and handwriting recognition. In this paper we show that it has the potential to significantly outperform traditional methods for mode detection, which are usually based on stroke classification. As a further advantage over previous approaches, the proposed system is trainable and does not rely on user-defined heuristics. Moreover, it can be easily adapted to new or additional types of modes by just providing the system with new training data. |
|
|
Address |
Bari, italy |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
978-1-4673-2262-1 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICFHR |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number  |
Admin @ si @ IFB2012 |
Serial |
2056 |
|
Permanent link to this record |
|
|
|
|
Author |
Masakazu Iwamura; Naoyuki Morimoto; Keishi Tainaka; Dena Bazazian; Lluis Gomez; Dimosthenis Karatzas |

|
|
Title |
ICDAR2017 Robust Reading Challenge on Omnidirectional Video |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Results of ICDAR 2017 Robust Reading Challenge on Omnidirectional Video are presented. This competition uses Downtown Osaka Scene Text (DOST) Dataset that was captured in Osaka, Japan with an omnidirectional camera. Hence, it consists of sequential images (videos) of different view angles. Regarding the sequential images as videos (video mode), two tasks of localisation and end-to-end recognition are prepared. Regarding them as a set of still images (still image mode), three tasks of localisation, cropped word recognition and end-to-end recognition are prepared. As the dataset has been captured in Japan, the dataset contains Japanese text but also include text consisting of alphanumeric characters (Latin text). Hence, a submitted result for each task is evaluated in three ways: using Japanese only ground truth (GT), using Latin only GT and using combined GTs of both. Finally, by the submission deadline, we have received two submissions in the text localisation task of the still image mode. We intend to continue the competition in the open mode. Expecting further submissions, in this report we provide baseline results in all the tasks in addition to the submissions from the community. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.084; 600.121 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ IMT2017 |
Serial |
3077 |
|
Permanent link to this record |
|
|
|
|
Author |
Hana Jarraya; Muhammad Muzzamil Luqman; Jean-Yves Ramel |

|
|
Title |
Improving Fuzzy Multilevel Graph Embedding Technique by Employing Topological Node Features: An Application to Graphics Recognition |
Type |
Book Chapter |
|
Year |
2017 |
Publication |
Graphics Recognition. Current Trends and Challenges |
Abbreviated Journal |
|
|
|
Volume |
9657 |
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
|
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer |
Place of Publication |
|
Editor |
B. Lamiroy; R Dueire Lins |
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ JLR2017 |
Serial |
2928 |
|
Permanent link to this record |
|
|
|
|
Author |
Klara Janousckova; Jiri Matas; Lluis Gomez; Dimosthenis Karatzas |


|
|
Title |
Text Recognition – Real World Data and Where to Find Them |
Type |
Conference Article |
|
Year |
2020 |
Publication |
25th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
4489-4496 |
|
|
Keywords |
|
|
|
Abstract |
We present a method for exploiting weakly annotated images to improve text extraction pipelines. The approach uses an arbitrary end-to-end text recognition system to obtain text region proposals and their, possibly erroneous, transcriptions. The method includes matching of imprecise transcriptions to weak annotations and an edit distance guided neighbourhood search. It produces nearly error-free, localised instances of scene text, which we treat as “pseudo ground truth” (PGT). The method is applied to two weakly-annotated datasets. Training with the extracted PGT consistently improves the accuracy of a state of the art recognition model, by 3.7% on average, across different benchmark datasets (image domains) and 24.5% on one of the weakly annotated datasets 1 1 Acknowledgements. The authors were supported by Czech Technical University student grant SGS20/171/0HK3/3TJ13, the MEYS VVV project CZ.02.1.01/0.010.0J16 019/0000765 Research Center for Informatics, the Spanish Research project TIN2017-89779-P and the CERCA Programme / Generalitat de Catalunya. |
|
|
Address |
Virtual; January 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; 600.121; 600.129 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ JMG2020 |
Serial |
3557 |
|
Permanent link to this record |
|
|
|
|
Author |
Soumya Jahagirdar; Minesh Mathew; Dimosthenis Karatzas; CV Jawahar |


|
|
Title |
Watching the News: Towards VideoQA Models that can Read |
Type |
Conference Article |
|
Year |
2023 |
Publication |
Proceedings of the IEEE/CVF Winter Conference on Applications of Computer |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Video Question Answering methods focus on commonsense reasoning and visual cognition of objects or persons and their interactions over time. Current VideoQA approaches ignore the textual information present in the video. Instead, we argue that textual information is complementary to the action and provides essential contextualisation cues to the reasoning process. To this end, we propose a novel VideoQA task that requires reading and understanding the text in the video. To explore this direction, we focus on news videos and require QA systems to comprehend and answer questions about the topics presented by combining visual and textual cues in the video. We introduce the ``NewsVideoQA'' dataset that comprises more than 8,600 QA pairs on 3,000+ news videos obtained from diverse news channels from around the world. We demonstrate the limitations of current Scene Text VQA and VideoQA methods and propose ways to incorporate scene text information into VideoQA methods. |
|
|
Address |
Waikoloa; Hawai; USA; January 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
WACV |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number  |
Admin @ si @ JMK2023 |
Serial |
3899 |
|
Permanent link to this record |
|
|
|
|
Author |
Soumya Jahagirdar; Minesh Mathew; Dimosthenis Karatzas; CV Jawahar |


|
|
Title |
Understanding Video Scenes Through Text: Insights from Text-Based Video Question Answering |
Type |
Conference Article |
|
Year |
2023 |
Publication |
Proceedings of the IEEE/CVF International Conference on Computer Vision (ICCV) Workshops |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Researchers have extensively studied the field of vision and language, discovering that both visual and textual content is crucial for understanding scenes effectively. Particularly, comprehending text in videos holds great significance, requiring both scene text understanding and temporal reasoning. This paper focuses on exploring two recently introduced datasets, NewsVideoQA and M4-ViteVQA, which aim to address video question answering based on textual content. The NewsVideoQA dataset contains question-answer pairs related to the text in news videos, while M4- ViteVQA comprises question-answer pairs from diverse categories like vlogging, traveling, and shopping. We provide an analysis of the formulation of these datasets on various levels, exploring the degree of visual understanding and multi-frame comprehension required for answering the questions. Additionally, the study includes experimentation with BERT-QA, a text-only model, which demonstrates comparable performance to the original methods on both datasets, indicating the shortcomings in the formulation of these datasets. Furthermore, we also look into the domain adaptation aspect by examining the effectiveness of training on M4-ViteVQA and evaluating on NewsVideoQA and vice-versa, thereby shedding light on the challenges and potential benefits of out-of-domain training. |
|
|
Address |
Paris; France; October 2023 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICCVW |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number  |
Admin @ si @ JMK2023 |
Serial |
3946 |
|
Permanent link to this record |
|
|
|
|
Author |
Hana Jarraya; Oriol Ramos Terrades; Josep Llados |


|
|
Title |
Graph Embedding through Probabilistic Graphical Model applied to Symbolic Graphs |
Type |
Conference Article |
|
Year |
2017 |
Publication |
8th Iberian Conference on Pattern Recognition and Image Analysis |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Attributed Graph; Probabilistic Graphical Model; Graph Embedding; Structured Support Vector Machines |
|
|
Abstract |
We propose a new Graph Embedding (GEM) method that takes advantages of structural pattern representation. It models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector. This vector is a signature of AG in a lower dimensional vectorial space. We apply Structured Support Vector Machines (SSVM) to process classification task. As first tentative, results on the GREC dataset are encouraging enough to go further on this direction. |
|
|
Address |
Faro; Portugal; June 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
IbPRIA |
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ JRL2017a |
Serial |
2953 |
|
Permanent link to this record |
|
|
|
|
Author |
Hana Jarraya; Oriol Ramos Terrades; Josep Llados |

|
|
Title |
Learning structural loss parameters on graph embedding applied on symbolic graphs |
Type |
Conference Article |
|
Year |
2017 |
Publication |
12th IAPR International Workshop on Graphics Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
We propose an amelioration of proposed Graph Embedding (GEM) method in previous work that takes advantages of structural pattern representation and the structured distortion. it models an Attributed Graph (AG) as a Probabilistic Graphical Model (PGM). Then, it learns the parameters of this PGM presented by a vector, as new signature of AG in a lower dimensional vectorial space. We focus to adapt the structured learning algorithm via 1_slack formulation with a suitable risk function, called Graph Edit Distance (GED). It defines the dissimilarity of the ground truth and predicted graph labels. It determines by the error tolerant graph matching using bipartite graph matching algorithm. We apply Structured Support Vector Machines (SSVM) to process classification task. During our experiments, we got our results on the GREC dataset. |
|
|
Address |
Kyoto; Japan; November 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG; 600.097; 600.121 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ JRL2017b |
Serial |
3073 |
|
Permanent link to this record |
|
|
|
|
Author |
S.K. Jemni; Mohamed Ali Souibgui; Yousri Kessentini; Alicia Fornes |

|
|
Title |
Enhance to Read Better: A Multi-Task Adversarial Network for Handwritten Document Image Enhancement |
Type |
Journal Article |
|
Year |
2022 |
Publication |
Pattern Recognition |
Abbreviated Journal |
PR |
|
|
Volume |
123 |
Issue |
|
Pages |
108370 |
|
|
Keywords |
|
|
|
Abstract |
Handwritten document images can be highly affected by degradation for different reasons: Paper ageing, daily-life scenarios (wrinkles, dust, etc.), bad scanning process and so on. These artifacts raise many readability issues for current Handwritten Text Recognition (HTR) algorithms and severely devalue their efficiency. In this paper, we propose an end to end architecture based on Generative Adversarial Networks (GANs) to recover the degraded documents into a and form. Unlike the most well-known document binarization methods, which try to improve the visual quality of the degraded document, the proposed architecture integrates a handwritten text recognizer that promotes the generated document image to be more readable. To the best of our knowledge, this is the first work to use the text information while binarizing handwritten documents. Extensive experiments conducted on degraded Arabic and Latin handwritten documents demonstrate the usefulness of integrating the recognizer within the GAN architecture, which improves both the visual quality and the readability of the degraded document images. Moreover, we outperform the state of the art in H-DIBCO challenges, after fine tuning our pre-trained model with synthetically degraded Latin handwritten images, on this task. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.124; 600.121; 602.230 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ JSK2022 |
Serial |
3613 |
|
Permanent link to this record |
|
|
|
|
Author |
Salim Jouili; Salvatore Tabbone; Ernest Valveny |


|
|
Title |
Comparing Graph Similarity Measures for Graphical Recognition |
Type |
Book Chapter |
|
Year |
2010 |
Publication |
Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers |
Abbreviated Journal |
|
|
|
Volume |
6020 |
Issue |
|
Pages |
37-48 |
|
|
Keywords |
|
|
|
Abstract |
In this paper we evaluate four graph distance measures. The analysis is performed for document retrieval tasks. For this aim, different kind of documents are used including line drawings (symbols), ancient documents (ornamental letters), shapes and trademark-logos. The experimental results show that the performance of each graph distance measure depends on the kind of data and the graph representation technique. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
Springer Berlin Heidelberg |
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
0302-9743 |
ISBN |
978-3-642-13727-3 |
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
GREC |
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number  |
Admin @ si @ JTV2010 |
Serial |
2404 |
|
Permanent link to this record |