toggle visibility Search & Display Options

Select All    Deselect All
 |   | 
Details
  Records Links
Author Sounak Dey; Anguelos Nicolaou; Josep Llados; Umapada Pal edit   pdf
url  openurl
  Title Evaluation of the Effect of Improper Segmentation on Word Spotting Type Journal Article
  Year 2019 Publication International Journal on Document Analysis and Recognition Abbreviated Journal IJDAR  
  Volume 22 Issue Pages 361-374  
  Keywords  
  Abstract Word spotting is an important recognition task in large-scale retrieval of document collections. In most of the cases, methods are developed and evaluated assuming perfect word segmentation. In this paper, we propose an experimental framework to quantify the goodness that word segmentation has on the performance achieved by word spotting methods in identical unbiased conditions. The framework consists of generating systematic distortions on segmentation and retrieving the original queries from the distorted dataset. We have tested our framework on several established and state-of-the-art methods using George Washington and Barcelona Marriage Datasets. The experiments done allow for an estimate of the end-to-end performance of word spotting methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.084; 600.121; 600.140; 600.129 Approved no  
  Call Number (up) Admin @ si @ DNL2019 Serial 3455  
Permanent link to this record
 

 
Author Anjan Dutta; Umapada Pal; Josep Llados edit  url
openurl 
  Title Compact Correlated Features for Writer Independent Signature Verification Type Conference Article
  Year 2016 Publication 23rd International Conference on Pattern Recognition Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract This paper considers the offline signature verification problem which is considered to be an important research line in the field of pattern recognition. In this work we propose hybrid features that consider the local features and their global statistics in the signature image. This has been done by creating a vocabulary of histogram of oriented gradients (HOGs). We impose weights on these local features based on the height information of water reservoirs obtained from the signature. Spatial information between local features are thought to play a vital role in considering the geometry of the signatures which distinguishes the originals from the forged ones. Nevertheless, learning a condensed set of higher order neighbouring features based on visual words, e.g., doublets and triplets, continues to be a challenging problem as possible combinations of visual words grow exponentially. To avoid this explosion of size, we create a code of local pairwise features which are represented as joint descriptors. Local features are paired based on the edges of a graph representation built upon the Delaunay triangulation. We reveal the advantage of combining both type of visual codebooks (order one and pairwise) for signature verification task. This is validated through an encouraging result on two benchmark datasets viz. CEDAR and GPDS300.  
  Address Cancun; Mexico; December 2016  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICPR  
  Notes DAG; 600.097 Approved no  
  Call Number (up) Admin @ si @ DPL2016 Serial 2875  
Permanent link to this record
 

 
Author Sounak Dey; Pau Riba; Anjan Dutta; Josep Llados; Yi-Zhe Song edit   pdf
url  doi
openurl 
  Title Doodle to Search: Practical Zero-Shot Sketch-Based Image Retrieval Type Conference Article
  Year 2019 Publication IEEE Conference on Computer Vision and Pattern Recognition Abbreviated Journal  
  Volume Issue Pages 2179-2188  
  Keywords  
  Abstract In this paper, we investigate the problem of zero-shot sketch-based image retrieval (ZS-SBIR), where human sketches are used as queries to conduct retrieval of photos from unseen categories. We importantly advance prior arts by proposing a novel ZS-SBIR scenario that represents a firm step forward in its practical application. The new setting uniquely recognizes two important yet often neglected challenges of practical ZS-SBIR, (i) the large domain gap between amateur sketch and photo, and (ii) the necessity for moving towards large-scale retrieval. We first contribute to the community a novel ZS-SBIR dataset, QuickDraw-Extended, that consists of 330,000 sketches and 204,000 photos spanning across 110 categories. Highly abstract amateur human sketches are purposefully sourced to maximize the domain gap, instead of ones included in existing datasets that can often be semi-photorealistic. We then formulate a ZS-SBIR framework to jointly model sketches and photos into a common embedding space. A novel strategy to mine the mutual information among domains is specifically engineered to alleviate the domain gap. External semantic knowledge is further embedded to aid semantic transfer. We show that, rather surprisingly, retrieval performance significantly outperforms that of state-of-the-art on existing datasets that can already be achieved using a reduced version of our model. We further demonstrate the superior performance of our full model by comparing with a number of alternatives on the newly proposed dataset. The new dataset, plus all training and testing code of our model, will be publicly released to facilitate future research.  
  Address Long beach; CA; USA; June 2019  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference CVPR  
  Notes DAG; 600.140; 600.121; 600.097 Approved no  
  Call Number (up) Admin @ si @ DRD2019 Serial 3462  
Permanent link to this record
 

 
Author Anjan Dutta; Pau Riba; Josep Llados; Alicia Fornes edit   pdf
doi  openurl
  Title Pyramidal Stochastic Graphlet Embedding for Document Pattern Classification Type Conference Article
  Year 2017 Publication 14th International Conference on Document Analysis and Recognition Abbreviated Journal  
  Volume Issue Pages 33-38  
  Keywords graph embedding; hierarchical graph representation; graph clustering; stochastic graphlet embedding; graph classification  
  Abstract Document pattern classification methods using graphs have received a lot of attention because of its robust representation paradigm and rich theoretical background. However, the way of preserving and the process for delineating documents with graphs introduce noise in the rendition of underlying data, which creates instability in the graph representation. To deal with such unreliability in representation, in this paper, we propose Pyramidal Stochastic Graphlet Embedding (PSGE).
Given a graph representing a document pattern, our method first computes a graph pyramid by successively reducing the base graph. Once the graph pyramid is computed, we apply Stochastic Graphlet Embedding (SGE) for each level of the pyramid and combine their embedded representation to obtain a global delineation of the original graph. The consideration of pyramid of graphs rather than just a base graph extends the representational power of the graph embedding, which reduces the instability caused due to noise and distortion. When plugged with support
vector machine, our proposed PSGE has outperformed the state-of-the-art results in recognition of handwritten words as well as graphical symbols
 
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference ICDAR  
  Notes DAG; 600.097; 601.302; 600.121 Approved no  
  Call Number (up) Admin @ si @ DRL2017 Serial 3054  
Permanent link to this record
 

 
Author Anjan Dutta; Pau Riba; Josep Llados; Alicia Fornes edit   pdf
url  openurl
  Title Hierarchical Stochastic Graphlet Embedding for Graph-based Pattern Recognition Type Journal Article
  Year 2020 Publication Neural Computing and Applications Abbreviated Journal NEUCOMA  
  Volume 32 Issue Pages 11579–11596  
  Keywords  
  Abstract Despite being very successful within the pattern recognition and machine learning community, graph-based methods are often unusable because of the lack of mathematical operations defined in graph domain. Graph embedding, which maps graphs to a vectorial space, has been proposed as a way to tackle these difficulties enabling the use of standard machine learning techniques. However, it is well known that graph embedding functions usually suffer from the loss of structural information. In this paper, we consider the hierarchical structure of a graph as a way to mitigate this loss of information. The hierarchical structure is constructed by topologically clustering the graph nodes and considering each cluster as a node in the upper hierarchical level. Once this hierarchical structure is constructed, we consider several configurations to define the mapping into a vector space given a classical graph embedding, in particular, we propose to make use of the stochastic graphlet embedding (SGE). Broadly speaking, SGE produces a distribution of uniformly sampled low-to-high-order graphlets as a way to embed graphs into the vector space. In what follows, the coarse-to-fine structure of a graph hierarchy and the statistics fetched by the SGE complements each other and includes important structural information with varied contexts. Altogether, these two techniques substantially cope with the usual information loss involved in graph embedding techniques, obtaining a more robust graph representation. This fact has been corroborated through a detailed experimental evaluation on various benchmark graph datasets, where we outperform the state-of-the-art methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.140; 600.121; 600.141 Approved no  
  Call Number (up) Admin @ si @ DRL2020 Serial 3348  
Permanent link to this record
 

 
Author Katerine Diaz; Jesus Martinez del Rincon; Marçal Rusiñol; Aura Hernandez-Sabate edit   pdf
doi  openurl
  Title Feature Extraction by Using Dual-Generalized Discriminative Common Vectors Type Journal Article
  Year 2019 Publication Journal of Mathematical Imaging and Vision Abbreviated Journal JMIV  
  Volume 61 Issue 3 Pages 331-351  
  Keywords Online feature extraction; Generalized discriminative common vectors; Dual learning; Incremental learning; Decremental learning  
  Abstract In this paper, a dual online subspace-based learning method called dual-generalized discriminative common vectors (Dual-GDCV) is presented. The method extends incremental GDCV by exploiting simultaneously both the concepts of incremental and decremental learning for supervised feature extraction and classification. Our methodology is able to update the feature representation space without recalculating the full projection or accessing the previously processed training data. It allows both adding information and removing unnecessary data from a knowledge base in an efficient way, while retaining the previously acquired knowledge. The proposed method has been theoretically proved and empirically validated in six standard face recognition and classification datasets, under two scenarios: (1) removing and adding samples of existent classes, and (2) removing and adding new classes to a classification problem. Results show a considerable computational gain without compromising the accuracy of the model in comparison with both batch methodologies and other state-of-art adaptive methods.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; ADAS; 600.084; 600.118; 600.121; 600.129 Approved no  
  Call Number (up) Admin @ si @ DRR2019 Serial 3172  
Permanent link to this record
 

 
Author Thanh Ha Do; Oriol Ramos Terrades; Salvatore Tabbone edit  url
openurl 
  Title DSD: document sparse-based denoising algorithm Type Journal Article
  Year 2019 Publication Pattern Analysis and Applications Abbreviated Journal PAA  
  Volume 22 Issue 1 Pages 177–186  
  Keywords Document denoising; Sparse representations; Sparse dictionary learning; Document degradation models  
  Abstract In this paper, we present a sparse-based denoising algorithm for scanned documents. This method can be applied to any kind of scanned documents with satisfactory results. Unlike other approaches, the proposed approach encodes noise documents through sparse representation and visual dictionary learning techniques without any prior noise model. Moreover, we propose a precision parameter estimator. Experiments on several datasets demonstrate the robustness of the proposed approach compared to the state-of-the-art methods on document denoising.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.097; 600.140; 600.121 Approved no  
  Call Number (up) Admin @ si @ DRT2019 Serial 3254  
Permanent link to this record
 

 
Author Mathieu Nicolas Delalandre; Jean-Yves Ramel; Ernest Valveny; Muhammad Muzzamil Luqman edit  doi
isbn  openurl
  Title A Performance Characterization Algorithm for Symbol Localization Type Book Chapter
  Year 2010 Publication Graphics Recognition. Achievements, Challenges, and Evolution. 8th International Workshop, GREC 2009. Selected Papers Abbreviated Journal  
  Volume 6020 Issue Pages 260–271  
  Keywords  
  Abstract In this paper we present an algorithm for performance characterization of symbol localization systems. This algorithm is aimed to be a more “reliable” and “open” solution to characterize the performance. To achieve that, it exploits only single points as the result of localization and offers the possibility to reconsider the localization results provided by a system. We use the information about context in groundtruth, and overall localization results, to detect the ambiguous localization results. A probability score is computed for each matching between a localization point and a groundtruth region, depending on the spatial distribution of the other regions in the groundtruth. Final characterization is given with detection rate/probability score plots, describing the sets of possible interpretations of the localization results, according to a given confidence rate. We present experimentation details along with the results for the symbol localization system of [1], exploiting a synthetic dataset of architectural floorplans and electrical diagrams (composed of 200 images and 3861 symbols).  
  Address  
  Corporate Author Thesis  
  Publisher Springer Berlin Heidelberg Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title LNCS  
  Series Volume Series Issue Edition  
  ISSN 0302-9743 ISBN 978-3-642-13727-3 Medium  
  Area Expedition Conference GREC  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @ DRV2010 Serial 2406  
Permanent link to this record
 

 
Author Sounak Dey; Palaiahnakote Shivakumara; K.S. Raghunanda; Umapada Pal; Tong Lu; G. Hemantha Kumar; Chee Seng Chan edit  url
openurl 
  Title Script independent approach for multi-oriented text detection in scene image Type Journal Article
  Year 2017 Publication Neurocomputing Abbreviated Journal NEUCOM  
  Volume 242 Issue Pages 96-112  
  Keywords  
  Abstract Developing a text detection method which is invariant to scripts in natural scene images is a challeng- ing task due to different geometrical structures of various scripts. Besides, multi-oriented of text lines in natural scene images make the problem more challenging. This paper proposes to explore ring radius transform (RRT) for text detection in multi-oriented and multi-script environments. The method finds component regions based on convex hull to generate radius matrices using RRT. It is a fact that RRT pro- vides low radius values for the pixels that are near to edges, constant radius values for the pixels that represent stroke width, and high radius values that represent holes created in background and convex hull because of the regular structures of text components. We apply k -means clustering on the radius matrices to group such spatially coherent regions into individual clusters. Then the proposed method studies the radius values of such cluster components that are close to the centroid and far from the cen- troid to detect text components. Furthermore, we have developed a Bangla dataset (named as ISI-UM dataset) and propose a semi-automatic system for generating its ground truth for text detection of arbi- trary orientations, which can be used by the researchers for text detection and recognition in the future. The ground truth will be released to public. Experimental results on our ISI-UM data and other standard datasets, namely, ICDAR 2013 scene, SVT and MSRA data, show that the proposed method outperforms the existing methods in terms of multi-lingual and multi-oriented text detection ability.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG; 600.121 Approved no  
  Call Number (up) Admin @ si @ DSR2017 Serial 3260  
Permanent link to this record
 

 
Author Marwa Dhiaf; Mohamed Ali Souibgui; Kai Wang; Yuyang Liu; Yousri Kessentini; Alicia Fornes; Ahmed Cheikh Rouhou edit   pdf
url  openurl
  Title CSSL-MHTR: Continual Self-Supervised Learning for Scalable Multi-script Handwritten Text Recognition Type Miscellaneous
  Year 2023 Publication Arxiv Abbreviated Journal  
  Volume Issue Pages  
  Keywords  
  Abstract Self-supervised learning has recently emerged as a strong alternative in document analysis. These approaches are now capable of learning high-quality image representations and overcoming the limitations of supervised methods, which require a large amount of labeled data. However, these methods are unable to capture new knowledge in an incremental fashion, where data is presented to the model sequentially, which is closer to the realistic scenario. In this paper, we explore the potential of continual self-supervised learning to alleviate the catastrophic forgetting problem in handwritten text recognition, as an example of sequence recognition. Our method consists in adding intermediate layers called adapters for each task, and efficiently distilling knowledge from the previous model while learning the current task. Our proposed framework is efficient in both computation and memory complexity. To demonstrate its effectiveness, we evaluate our method by transferring the learned model to diverse text recognition downstream tasks, including Latin and non-Latin scripts. As far as we know, this is the first application of continual self-supervised learning for handwritten text recognition. We attain state-of-the-art performance on English, Italian and Russian scripts, whilst adding only a few parameters per task. The code and trained models will be publicly available.  
  Address  
  Corporate Author Thesis  
  Publisher Place of Publication Editor  
  Language Summary Language Original Title  
  Series Editor Series Title Abbreviated Series Title  
  Series Volume Series Issue Edition  
  ISSN ISBN Medium  
  Area Expedition Conference  
  Notes DAG Approved no  
  Call Number (up) Admin @ si @ DSW2023 Serial 3851  
Permanent link to this record
Select All    Deselect All
 |   | 
Details

Save Citations:
Export Records: