|
Records |
Links |
|
Author |
Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero |


|
|
Title |
e-Counterfeit: a mobile-server platform for document counterfeit detection |
Type |
Conference Article |
|
Year |
2017 |
Publication |
14th IAPR International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper presents a novel application to detect counterfeit identity documents forged by a scan-printing operation. Texture analysis approaches are proposed to extract validation features from security background that is usually printed in documents as IDs or banknotes. The main contribution of this work is the end-to-end mobile-server architecture, which provides a service for non-expert users and therefore can be used in several scenarios. The system also provides a crowdsourcing mode so labeled images can be gathered, generating databases for incremental training of the algorithms. |
|
|
Address |
Kyoto; Japan; November 2017 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.061; 600.097; 600.121 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BRL2018 |
Serial |
3084 |
|
Permanent link to this record |
|
|
|
|
Author |
Albert Berenguel; Oriol Ramos Terrades; Josep Llados; Cristina Cañero |


|
|
Title |
Recurrent Comparator with attention models to detect counterfeit documents |
Type |
Conference Article |
|
Year |
2019 |
Publication |
15th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper is focused on the detection of counterfeit documents via the recurrent comparison of the security textured background regions of two images. The main contributions are twofold: first we apply and adapt a recurrent comparator architecture with attention mechanism to the counterfeit detection task, which constructs a representation of the background regions by recurrently condition the next observation, learning the difference between genuine and counterfeit images through iterative glimpses. Second we propose a new counterfeit document dataset to ensure the generalization of the learned model towards the detection of the lack of resolution during the counterfeit manufacturing. The presented network, outperforms state-of-the-art classification approaches for counterfeit detection as demonstrated in the evaluation. |
|
|
Address |
Sidney; Australia; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICDAR |
|
|
Notes |
DAG; 600.140; 600.121; 601.269 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BRL2019 |
Serial |
3456 |
|
Permanent link to this record |
|
|
|
|
Author |
Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal |


|
|
Title |
Graph-Based Deep Generative Modelling for Document Layout Generation |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12917 |
Issue |
|
Pages |
525-537 |
|
|
Keywords |
|
|
|
Abstract |
One of the major prerequisites for any deep learning approach is the availability of large-scale training data. When dealing with scanned document images in real world scenarios, the principal information of its content is stored in the layout itself. In this work, we have proposed an automated deep generative model using Graph Neural Networks (GNNs) to generate synthetic data with highly variable and plausible document layouts that can be used to train document interpretation systems, in this case, specially in digital mailroom applications. It is also the first graph-based approach for document layout generation task experimented on administrative document images, in this case, invoices. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BRL2021 |
Serial |
3676 |
|
Permanent link to this record |
|
|
|
|
Author |
Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal |


|
|
Title |
DocSynth: A Layout Guided Approach for Controllable Document Image Synthesis |
Type |
Conference Article |
|
Year |
2021 |
Publication |
16th International Conference on Document Analysis and Recognition |
Abbreviated Journal |
|
|
|
Volume |
12823 |
Issue |
|
Pages |
555–568 |
|
|
Keywords |
|
|
|
Abstract |
Despite significant progress on current state-of-the-art image generation models, synthesis of document images containing multiple and complex object layouts is a challenging task. This paper presents a novel approach, called DocSynth, to automatically synthesize document images based on a given layout. In this work, given a spatial layout (bounding boxes with object categories) as a reference by the user, our proposed DocSynth model learns to generate a set of realistic document images consistent with the defined layout. Also, this framework has been adapted to this work as a superior baseline model for creating synthetic document image datasets for augmenting real data during training for document layout analysis tasks. Different sets of learning objectives have been also used to improve the model performance. Quantitatively, we also compare the generated results of our model with real data using standard evaluation metrics. The results highlight that our model can successfully generate realistic and diverse document images with multiple objects. We also present a comprehensive qualitative analysis summary of the different scopes of synthetic image generation tasks. Lastly, to our knowledge this is the first work of its kind. |
|
|
Address |
Lausanne; Suissa; September 2021 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
LNCS |
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BRL2021a |
Serial |
3573 |
|
Permanent link to this record |
|
|
|
|
Author |
Sanket Biswas; Pau Riba; Josep Llados; Umapada Pal |


|
|
Title |
Beyond Document Object Detection: Instance-Level Segmentation of Complex Layouts |
Type |
Journal Article |
|
Year |
2021 |
Publication |
International Journal on Document Analysis and Recognition |
Abbreviated Journal |
IJDAR |
|
|
Volume |
24 |
Issue |
|
Pages |
269–281 |
|
|
Keywords |
|
|
|
Abstract |
Information extraction is a fundamental task of many business intelligence services that entail massive document processing. Understanding a document page structure in terms of its layout provides contextual support which is helpful in the semantic interpretation of the document terms. In this paper, inspired by the progress of deep learning methodologies applied to the task of object recognition, we transfer these models to the specific case of document object detection, reformulating the traditional problem of document layout analysis. Moreover, we importantly contribute to prior arts by defining the task of instance segmentation on the document image domain. An instance segmentation paradigm is especially important in complex layouts whose contents should interact for the proper rendering of the page, i.e., the proper text wrapping around an image. Finally, we provide an extensive evaluation, both qualitative and quantitative, that demonstrates the superior performance of the proposed methodology over the current state of the art. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG; 600.121; 600.140; 110.312 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BRL2021b |
Serial |
3574 |
|
Permanent link to this record |
|
|
|
|
Author |
Ayan Banerjee; Palaiahnakote Shivakumara; Parikshit Acharya; Umapada Pal; Josep Llados |


|
|
Title |
TWD: A New Deep E2E Model for Text Watermark Detection in Video Images |
Type |
Conference Article |
|
Year |
2022 |
Publication |
26th International Conference on Pattern Recognition |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
Deep learning; U-Net; FCENet; Scene text detection; Video text detection; Watermark text detection |
|
|
Abstract |
Text watermark detection in video images is challenging because text watermark characteristics are different from caption and scene texts in the video images. Developing a successful model for detecting text watermark, caption, and scene texts is an open challenge. This study aims at developing a new Deep End-to-End model for Text Watermark Detection (TWD), caption and scene text in video images. To standardize non-uniform contrast, quality, and resolution, we explore the U-Net3+ model for enhancing poor quality text without affecting high-quality text. Similarly, to address the challenges of arbitrary orientation, text shapes and complex background, we explore Stacked Hourglass Encoded Fourier Contour Embedding Network (SFCENet) by feeding the output of the U-Net3+ model as input. Furthermore, the proposed work integrates enhancement and detection models as an end-to-end model for detecting multi-type text in video images. To validate the proposed model, we create our own dataset (named TW-866), which provides video images containing text watermark, caption (subtitles), as well as scene text. The proposed model is also evaluated on standard natural scene text detection datasets, namely, ICDAR 2019 MLT, CTW1500, Total-Text, and DAST1500. The results show that the proposed method outperforms the existing methods. This is the first work on text watermark detection in video images to the best of our knowledge |
|
|
Address |
Montreal; Quebec; Canada; August 2022 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICPR |
|
|
Notes |
DAG; |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BSA2022 |
Serial |
3788 |
|
Permanent link to this record |
|
|
|
|
Author |
Kunal Biswas; Palaiahnakote Shivakumara; Umapada Pal; Tong Lu; Michel Blumenstein; Josep Llados |

|
|
Title |
Classification of aesthetic natural scene images using statistical and semantic features |
Type |
Journal Article |
|
Year |
2023 |
Publication |
Multimedia Tools and Applications |
Abbreviated Journal |
MTAP |
|
|
Volume |
82 |
Issue |
9 |
Pages |
13507-13532 |
|
|
Keywords |
|
|
|
Abstract |
Aesthetic image analysis is essential for improving the performance of multimedia image retrieval systems, especially from a repository of social media and multimedia content stored on mobile devices. This paper presents a novel method for classifying aesthetic natural scene images by studying the naturalness of image content using statistical features, and reading text in the images using semantic features. Unlike existing methods that focus only on image quality with human information, the proposed approach focuses on image features as well as text-based semantic features without human intervention to reduce the gap between subjectivity and objectivity in the classification. The aesthetic classes considered in this work are (i) Very Pleasant, (ii) Pleasant, (iii) Normal and (iv) Unpleasant. The naturalness is represented by features of focus, defocus, perceived brightness, perceived contrast, blurriness and noisiness, while semantics are represented by text recognition, description of the images and labels of images, profile pictures, and banner images. Furthermore, a deep learning model is proposed in a novel way to fuse statistical and semantic features for the classification of aesthetic natural scene images. Experiments on our own dataset and the standard datasets demonstrate that the proposed approach achieves 92.74%, 88.67% and 83.22% average classification rates on our own dataset, AVA dataset and CUHKPQ dataset, respectively. Furthermore, a comparative study of the proposed model with the existing methods shows that the proposed method is effective for the classification of aesthetic social media images. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
|
|
|
Notes |
DAG |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BSP2023 |
Serial |
3873 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Ruben Tito; Lluis Gomez; Ernest Valveny; Dimosthenis Karatzas |


|
|
Title |
OCR-IDL: OCR Annotations for Industry Document Library Dataset |
Type |
Conference Article |
|
Year |
2022 |
Publication |
ECCV Workshop on Text in Everything |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
Pretraining has proven successful in Document Intelligence tasks where deluge of documents are used to pretrain the models only later to be finetuned on downstream tasks. One of the problems of the pretraining approaches is the inconsistent usage of pretraining data with different OCR engines leading to incomparable results between models. In other words, it is not obvious whether the performance gain is coming from diverse usage of amount of data and distinct OCR engines or from the proposed models. To remedy the problem, we make public the OCR annotations for IDL documents using commercial OCR engine given their superior performance over open source OCR models. The contributed dataset (OCR-IDL) has an estimated monetary value over 20K US$. It is our hope that OCR-IDL can be a starting point for future works on Document Intelligence. All of our data and its collection process with the annotations can be found in this https URL. |
|
|
Address |
|
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ECCV |
|
|
Notes |
DAG; no proj |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BTG2022 |
Serial |
3817 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Ruben Tito; Andres Mafla; Lluis Gomez; Marçal Rusiñol; M. Mathew; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas |


|
|
Title |
ICDAR 2019 Competition on Scene Text Visual Question Answering |
Type |
Conference Article |
|
Year |
2019 |
Publication |
3rd Workshop on Closing the Loop Between Vision and Language, in conjunction with ICCV2019 |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
|
|
|
Keywords |
|
|
|
Abstract |
This paper presents final results of ICDAR 2019 Scene Text Visual Question Answering competition (ST-VQA). ST-VQA introduces an important aspect that is not addressed
by any Visual Question Answering system up to date, namely the incorporation of scene text to answer questions asked about an image. The competition introduces a new dataset comprising 23, 038 images annotated with 31, 791 question / answer pairs where the answer is always grounded on text instances present in the image. The images are taken from 7 different public computer vision datasets, covering a wide range of scenarios.
The competition was structured in three tasks of increasing difficulty, that require reading the text in a scene and understanding it in the context of the scene, to correctly answer a given question. A novel evaluation metric is presented, which elegantly assesses both key capabilities expected from an optimal model: text recognition and image understanding. A detailed analysis of results from different participants is showcased, which provides insight into the current capabilities of VQA systems that can read. We firmly believe the dataset proposed in this challenge will be an important milestone to consider towards a path of more robust and general models that
can exploit scene text to achieve holistic image understanding. |
|
|
Address |
Sydney; Australia; September 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
CLVL |
|
|
Notes |
DAG; 600.129; 601.338; 600.135; 600.121 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BTM2019a |
Serial |
3284 |
|
Permanent link to this record |
|
|
|
|
Author |
Ali Furkan Biten; Ruben Tito; Andres Mafla; Lluis Gomez; Marçal Rusiñol; C.V. Jawahar; Ernest Valveny; Dimosthenis Karatzas |


|
|
Title |
Scene Text Visual Question Answering |
Type |
Conference Article |
|
Year |
2019 |
Publication |
18th IEEE International Conference on Computer Vision |
Abbreviated Journal |
|
|
|
Volume |
|
Issue |
|
Pages |
4291-4301 |
|
|
Keywords |
|
|
|
Abstract |
Current visual question answering datasets do not consider the rich semantic information conveyed by text within an image. In this work, we present a new dataset, ST-VQA, that aims to highlight the importance of exploiting highlevel semantic information present in images as textual cues in the Visual Question Answering process. We use this dataset to define a series of tasks of increasing difficulty for which reading the scene text in the context provided by the visual information is necessary to reason and generate an appropriate answer. We propose a new evaluation metric for these tasks to account both for reasoning errors as well as shortcomings of the text recognition module. In addition we put forward a series of baseline methods, which provide further insight to the newly released dataset, and set the scene for further research. |
|
|
Address |
Seul; Corea; October 2019 |
|
|
Corporate Author |
|
Thesis |
|
|
|
Publisher |
|
Place of Publication |
|
Editor |
|
|
|
Language |
|
Summary Language |
|
Original Title |
|
|
|
Series Editor |
|
Series Title |
|
Abbreviated Series Title |
|
|
|
Series Volume |
|
Series Issue |
|
Edition |
|
|
|
ISSN |
|
ISBN |
|
Medium |
|
|
|
Area |
|
Expedition |
|
Conference |
ICCV |
|
|
Notes |
DAG; 600.129; 600.135; 601.338; 600.121 |
Approved |
no |
|
|
Call Number  |
Admin @ si @ BTM2019b |
Serial |
3285 |
|
Permanent link to this record |